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Fokker-Planck Equation- an Application in the Dynamic Disturbing System
University lecturer Doina Constanţa Mihai,
 Mathematics Department, Faculty of Sciences and Arts, Valahia University of Târgovişte 


Abstract: The aim of this paper is to present an application of the Fokker-Planck equation in study of a stationary dynamic system, corrupted by a stochastic force. The dynamic system is modeled by a differential stochastic equation where the white noise term is amplified with a diffusion coefficient which depends by an real parameter. The stability points of the determinist system are the same with maxim points of distribution function of the system presence point in phase’s space. 


Let’s take a dynamic system described by an stochastic differential equation like:
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For dynamic stationary systems or for systems which have an invariant probability density of the presence point in phase’s space, we can conclude, using the Fokker-Planck equation, the relation below for the initial probability density: 
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In our one-dimensional space example, we integrate once and find:  
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Using the marginal conditions, at infinite, 
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, we integrate once again and finally obtain:  
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where N is the normalization factor. 


We set 
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and then (2) becomes:
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It’s clear that, in cases where the normalization factor N exists, the probability density 
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Now, let’s compare this with the determinist dynamic system, described by respective differential equation:
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but which have random initial conditions.


The stability points of the system are the same with the extreme point for invariant probability density, because: 
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so,  the maximum probability density points are asymptotic stabile fix points and respective, the minimum values are in no stabile fix points.   


Let the following determinist differential equation:
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The system has an asymptotic stabile fix point 
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 which attraction domain is the whole M interval.


We study now the same system but perturbed by a stochastic force like white noise.  
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Which contains an random factor multiplied with the diffusion coefficient: 
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The equivalent stochastic Ito differential equation will be:
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The initial value
[image: image18.wmf]0
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, is a random variable which repartition function is concentrated in M interval. It’s probability density is deduced from:
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and the normalization factor N, in according with (2’), is:
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We determine now the extreme point of the probability density function. The extremes of 
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We note 
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 and we obtain the derivation
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Solving the equation:
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we obtain:
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Now, we try to count the solutions of the equation studying the values of
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So we obtain:   


Case 1) if 
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 which is the asymptotic stabile fix point from deterministic case.


Case 2) when
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 points. This means that the most probable instances doesn’t coincide any more with the asymptotic stabile fix point from deterministic case 
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 parameter, which amplify the force of the perturbation factor of the system, has deviances this critical value 
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Fig. 1. The invariant repartition density, 
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, in phases space of stochastic perturbed in 1) and 2) cases dynamic system, after values of noise amplified parameter values.   
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Fig. 2. The number of probability density extreme values
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 factor value which multiplies corrupter noise.


In the critical point 
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 appear stochastic bifurcations, which change the number of maximum extremes of probability density, produce only by noise force which perturbs the system. This phenomenon is named –crossing phase induced by noise. So, while   
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[image: image48.wmf]2

1

0

=

x

point, for 
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 appear two different phases and so the system is all the most time near by one of the two maximums 
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 In the same time the phenomenon cause is evidently: in the first case the diffusion coefficient,
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 point and have a zero value to the extremities  M interval. In this case 
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 and so the noise force is not great enough; the repulsive effect of fluctuation by vectorial field forces developed near by atractor point is high.


If the stochastic differential equation is interpreted in Stratonovich sense, the we obtain the same phenomenon, but with another critical point for multiplicative parameter of stochastic force,
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By generalization of previous equation study: we consider the stochastic equation in Ito sense:
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which result from Ito interpretation of formally stochastic differential equation:
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We suppose that s and f are functions from 
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 -parameter which lead the disturbing noise force.


For stochastic process x(t) The probability density function is given by:
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We calcule again the derivate function of probability density function and equal zero for to determine the local extremes points. We obtain, so, the equation:
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Conclusions: If the disturbing force of determinist system contains the multiplicative factor, and this is 
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If the disturbing noise is multiplied by a time variable factor, then it takes an change position of 
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 maxims reported at stabile fix points of f. For a noise force strong enough it can modify the number of 
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 maxims too. In these situations appear the crossing induced by noise.    


The differences between the two interpretations Ito and Stratonovich aren’t essentials. In each case appears the same facts and it’s change only the multiplicative factor critical value of stochastic force.  
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