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Abstract: In this paper, the oscillations of some nonlinear dynamical systems with specially distributed parameters are studied. The nonlinear part of the equations depends on the speed under polynomial form. Such situations generalize the Van der Pol equations with one, two, three or four parameters. It is the case of the electrical transistorized circuits (Lienard), the Rayleigh equations for nonlinear vibrations in elasticity, the aero-dynamical flutter. Here, besides the elastic force and the harmonic perturbations, we have dumping forces which contain polynomial terms in speed and in this case, the energetic perturbations can generate self-oscillations. For these systems, we study the stability of solutions in the autonomous or non autonomous case, the existence of bifurcations and limit cycles by using the criteria of Hopf and Bendixon and the Liapunov function. By applying the average method or asymptotic developments with respect to the small parameter, the resonance and the self-oscillations for these nonlinear dynamical systems are studied and the trajectories are specified.
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1. INTRODUCTION
In this paper we will study nonlinear equations of the type
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where 
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 is a small parameter and 
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 is a nonlinear function in 
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. Particularly, we will deal with equations where the damping force 
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 has variable coefficients which contain polynominals with 
[image: image6.wmf]x

x

&

,

 of the type [1], [2], [3]
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(2)

The family of equations (2) is a subset of the so called “Van der Pol” equations (VP). They represent mathematical models for mechanic vibrations, fluid oscillations [5], electrical transistorized circuits, generating lamps [10], flutter oscillations in aerodynamics [7], dampers with friction [9], astronomical phenomena, etc. The forces 
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Particularly, equations (2) can also be quasilinear:
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(3)

or
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(3’)

From equations of type (3), with the change 
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 and by integration, the Rayleigh equation can be obtained [4], [9]. Another form of (VP) equation is
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which represents the self-oscillating motion with dry friction of a rigid body on a driving belt with constant speed [2], [10]. A similar equation is the mathematical model for an aerodynamic flutter activated by the elastic force and the wind which implies a polynominal resistance force [7]:
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(4’)

A general form of the (VP) equation is [1]
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The study of the stability of solutions is performed by considering the phase space 
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 and by studying the behavior of solutions in the neighborhood of equilibrium points. In fact, we attach to every equation presented bellow, a system of the form
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which is a special case of the systems
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(6’)
The equilibrium points are the solutions 
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 of the algebraic system with unknowns
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Because of nonlinear forces with distributed parameters, there appear perturbations of the stability, bifurcations, limit cycles, self-oscillations. The criteria and the methods used herein are well known: the first approximation, Hopf and Bendixon bifurcations [6], [10], the method of the Liapunov function [4], the Van der Pol method with the method of constants variation, asymptotic approximations (Krilov-Bogoliubov-Mitropolski) [2], [3], [10], resonances, etc.
Now, we exemplify the technique for the choice of the sufficiently small and adimensional parameter 
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 and the obtaining of the quasilinear equation. So, by starting from equation 
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For the other equations, we can similarly proceed in order to choose the parameter
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.
2. STABILITATY. BIFURCATIONS. SELF-OSCILLATIONS. RESONANCE
We will do this study for the (VP) equations (3), (5), autonomous or non-autonomous [8], [10].
We consider the reduced equation (3) and the corresponding system in the phase space 
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The equilibrium point is 
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The characteristic polynominal with the corresponding roots will be
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If 
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 is an asymptotic stable point for the linear system (11) as for the nonlinear system (10). In fact, for 
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 is an asymptotic stable node and for 
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If 
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 is an unstable point for the linear system (11) as for the nonlinear system (10), the trajectories leaving 
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 is a simple stable centre for the linear system (11), so we cannot specify the stability of 
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 for the nonlinear system (10). Therefore, we will use the Liapunov and Bendixon theorems in order to study the existence of Hopf bifurcations and stable limit cycles. We will verify the existence of a periodic trajectory in the neighborhood of 
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. We also know that if this periodic solution is a stable limit cycle, then it contains the unstable point 
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Here, 
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 system (10) admits a periodic solution which is a limit cycle. In order to specify the stability of the limit cycle, we will use the complex form of system (6’). We have 
[image: image83.wmf]iy

x

z

+

=

, 
[image: image84.wmf]iy

x

z

-

=

, 
[image: image85.wmf]y

i

x

z

&

&

&

+

=

. By adding the two equations of (6’) we obtain

[image: image86.wmf](

)

(

)

m

m

a

,

,

z

z

g

z

z

+

=

&

,








(13)

where 
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 contains monominals of degrees 2, 3 of 
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Define the first Liapunov coefficient to be the real number
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We also know that 
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In the case of system (10) we have the complex form
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For 
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Remark. A different approach of system (10) or equation (16) is the use of polar coordinates: 
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 which can be qualitatively studied and sometimes integrated . In our case, the system obtained in this manner is nonlinear and difficult.
In order to solve system (10), because of its nonlinearity, we will use the Van der Pol method and the averaging method which is in fact the first approximation from asymptotic methods [8], [10].

We start from equation 
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Replacing 
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The solution of system (17), (19) with unknowns 
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We consider the polar coordinates
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where 
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Therefore, the solution 
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By averaging relations (20) with respect to period 
[image: image123.wmf]w

p

2

=

T

 and using (21), (22), we obtain

[image: image124.wmf](

)

(

)

(

)

(

)

(

)

(

)

ï

ï

î

ï

ï

í

ì

-

-

-

=

+

-

-

-

-

=

-

ò

ò

w

p

w

p

w

q

w

w

q

w

p

m

q

q

q

w

q

w

w

q

w

p

m

q

q

q

2

0

2

0

cos

sin

,

cos

2

cos

sin

sin

sin

,

cos

2

sin

cos

tdt

t

A

t

A

f

A

A

tdt

t

A

t

A

f

A

A

&

&

&

&

.


(24)
Denoting 
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When 
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Self-oscillations. They are oscillations produced by the energy transmitted to the system from sources with non-oscillating character: damping or resistance with dry friction, wind, maintained self-induction. Inside the motion equations, damping forces with variable coefficients appear and in certain moments, the characteristic equation admits real positive roots (instead of complex roots) which increase the amplitude. The phenomenon of resonance appears when we have perturbing external forces, while self-oscillations appear because of interaction between internal forces, particularly if these forces depend on speed with high exponents. For example, we have self-oscillations in equations 
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Returning to (25), we remark that we have to find 
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By performing this calculation for equation 
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and using (25), we have
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i.e.
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By integrating the obtained equations and by using the initial conditions 
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We have 
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The non-autonomous case. Consider equation
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By applying the method of Krilov-Bogoliubov-Mitropolski (K-B-M) [2], [3], [5] to equation (29), we seek for an asymptotic solution of type
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By replacing (30) in (29) and by making the identification with respect to 
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Using the initial conditions 
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Remark the term 
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[image: image207.wmf](

)

0

,

0

O

 which is a simply stable centre.

3. THE STUDY OF THE GENERALIZED VAN DER POL EQUATION
We can similarly study the general (VP) equation (8)
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We can directly consider equation
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which, by the change 
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where 
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We analyze equation (34) for the autonomous case. By considering the phase space for 
[image: image219.wmf]R

Î

a

, 
[image: image220.wmf]b

g

<

<

0

, we have

[image: image221.wmf](

)

(

)

y

x

Q

y

y

x

y

x

y

y

x

P

y

x

,

,

,

3

2

º

-

-

+

-

=

º

=

g

b

a

&

&

,





(36)
with the equilibrium point 
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with the characteristic equation 
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 (see (36)). It follows that, if 
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Now, we verify the existence of Hopf bifurcations for system (36) and 
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By the Hopf criterion (see (15)), we have 
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Now, we study equation (35) for the autonomous case with the Van der Pol method and the averaging method as they have been described in Section 2, relations (17)-(25). We start with 
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The critical point is
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By solving the first equation of (39) and taking account of the initial condition 
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Note that
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For 
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The curve 
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The non-autonomous case of equation (35) can be treated with the (K-B-M) method as in Section 2. This is the purpose of a future paper.
4. CONCLUSIONS
This paper has a scientific and didactic character by making a study on the class of general Van der Pol equations and by presenting the techniques for the use of the existing mathematical apparatus and by emphasizing the stability, the bifurcations, the self-oscillations and the resonances.
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