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Abstract :  The paper’s target is to make more understandable the properties of polymer network composites made up of re-entrant 

cell structures (auxetic hexagons) with demonstrable auxetic properties. The behavior of auxetic composites is interpreted in the light 

of Cosserat elasticity which admits degrees of freedom not present in the classical elasticity: the rotation of points in the material, 

and a couple per unit area or the couple stress. The prediction of the Young’s modulus is developed for a laminated periodic 

material made up of alternating aluminum and auxetic material, by using the Laplace and Fourier transforms.  
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1. INTRODUCTION  
 

Materials with negative Poisson’s ratio are termed by Evans [1] as auxetics or auxetic materials. The term auxetic is 

coming from the Greek word auxetos, meaning that which may be increased. Instead of getting thinner like an 

elongated elastic band when stretched, the auxetic material gains volume, expanding laterally. Auxetic materials and 

their negative Poisson’s ratios have not been well understood. Materials of this type are expected to have interesting 

mechanical properties, such as high energy absorption, fracture toughness, indentation resistance and enhanced shear 
moduli, which may be useful in some applications [2]-[5]. The aforementioned authors studied the application of 

auxetic materials to damping devices, medical anchors and cushions. Scientists have been aware of the existence of 

auxetic materials for over a hundred years, though without very special attention, and treating them as an accident or a 

curiosity. In the case of an isotropic material, the range of Poisson's ratio is from − 1.0 to 0.5, based on thermodynamic 

considerations of strain energy in the theory of elasticity. Love [6] presented an example of a cubic single crystal pyrite 

as having the Poisson's ratio of − 0.14, and he suggested that the effect may be caused by twinned crystals.  

 
Figure 1: Conventional honeycomb network, re-entrant honeycomb and hexagonal structures, with negative Poisson’s 

ratio. 

The auxetic behavior is found in materials from molecular and microscopic levels up to the macroscopic level. Negative 

Poisson's ratios are observed in real materials with a high degree of anisotropy, such as conventional honeycomb 

network, re-entrant honeycomb and hexagonal structures (figure 1), reticulated metal foams, the skin covering a cow’s 
teats, certain rocks and minerals, living bone tissue, etc. Fabrication of man-made auxetic materials and structures has 

succeeded, i.e. composite laminates, micro-porous polymers, 2D honeycombs and 3D foams.  

All major classes of materials (polymers, composites, metals and ceramics) can exist in auxetic form. A specific feature 

exhibeted by auxetic materials in comparison with other foams is their significant damping capacity at various loading 

levels, with increase up to 16 times compared to conventional foams [7]-[13].  

This paper focuses on the application of the Cosserat theory to derive the effective Young’s modulus of the laminated 
composite plate based on auxetic materials.  
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2. THE THEORY 
 

Consider a chiral Cosserat medium, in a Cartesian coordinates system ( , , )x y z . The equations of motion in the absence 

of body forces and body couples are [14], [15]  

, 0kl k luσ −ρ =&& ,  , 0rk r klr lr km j+ ε σ −ρ ϕ =&& .                                                                                                                   (1) 

Here klσ  is the stress tensor, klm  is the couple stress tensor, u  is the displacement vector, kϕ is the microrotation 

vector which in Cosserat elasticity is kinematically different from the macrorotation vector ,

1

2
k klm m lr u= ε , and klmε is 

the permutation symbol. We remember that kϕ  refers to the rotation of points themselves, while kr  refers to the 

rotation associated with movement of nearby points. In (1) ρ  is the mass density and j  the microinertia. The 

constitutive equations are given by 

1 , 2 , 3 ,(2 ) ( ) ,kl rr kl kl klm m m r r kl k l l ke e r C C Cσ = λ δ + µ + κ + κε −ϕ + ϕ δ + ϕ + ϕ                                                                     

, , , 1 2 3 3 2( ) ( ) ( ),kl r r kl k l l k rr kl kl klm m mm C e C C e C C r= αϕ δ +βϕ + γϕ + δ + + + − ε −ϕ                                                          (2) 

where  
. ,

1
( )

2
kl k l l ke u u= +  is the macrostrain vector. λ , and µ  are Lamé elastic constants,  κ  is the Cosserat rotation 

modulus,  , ,α β γ , the Cosserat rotation gradient moduli, and , 1, 2,3iC i =  are the chiral elastic constants associated 

with noncentrosymmetry. For 0iC =  the equations of isotropic micropolar elasticity are recovered. For 

0α = β = γ = κ = , (1) reduces to the constitutive equations of classical isotropic linear elasticity theory. From the 

requirement that the internal energy must be nonnegative (the material is stable), we obtain restrictions on the 

micropolar elastic constants 0 3 2≤ λ + µ + κ , 0 2≤ µ + κ , 0 ≤ κ , 0 3≤ α +β + γ , −γ ≤ β ≤ γ , 0 ≤ γ , and any positive or 

negative 
1 2 3, ,C C C . The initial conditions are given by 

0( , , ,0) ( , , )i iu x y z u x y z= , ( , , ,0) 0i x y zϕ = , 1, 2,3i = ,  ( , , ,0) 0ijm x y z = ,  ( , , ,0) 0ij x y zσ = ,   3i j= ≠ .                    (3) 

By introducing the dimensionless quantities 
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the motion equations are obtained from (1) and (2) as  
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The initial conditions (3) becomes 

0( , ,0)i iv x y v= ,  1,3i = ,  
2 ( , ,0) 0x yφ = .                                                                                                                          (6) 

Consider the case of laminated plates made up of a periodic layering of sheets normal to the direction x  of wave 

propagation, each elastic material having constant properties. For simplicity, without any loss of generality, the 

particular 2D case in which all quantities depend only on x  and z  is considered.  

 

3. SOLUTIONS 
 

To solve equations (4)-(6), consider the Laplace and Fourier transforms  

{ }2 2

0

( , , ), ( , , ) { ( , , ), ( , , )}exp( )di iv x z p x z p v x z t x z t pt t

∞

φ = φ −∫ , 1,3i = ,            
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{ }2 2

0
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ξ φ ξ = φ ξ∫%% , 1,3i = .         

By applying these transforms to (4)-(6), we obtain 
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An eigenvalue problem is obtained by taking the solutions of (3.3) of the form ( , , ) ( , ) exp( ),W z p X p qzξ = ξ  where 

1 3 2( , , ) { , , }W z p v vξ = φ%% % . The characteristic equation becomes 

3 2

1 2 3 0q q q−λ + λ + λ = ,                                                                                                                                                   (8) 

with 
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The roots of (8) are iq , 1,2,3i = , with real parts positive. The eigenvector ( , )X pξ is given by 
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Therefore, the solutions become 
3

1

( , , ) ( , ) exp( ( , ) )i i i

i

W z p B X p q p z
=

ξ = ξ ξ∑ , where 
iB , 1, 2,3i = , are arbitrary constants. 

The transformed displacement, microrotation and stresses are 

1 1 1 1 1 2 2 2 2 3 3 3 3( , , ) ( , ) ( , ) exp( ( , ) ) ( , ) ( , ) exp( ( , ) ) ( , ) ( , ) exp( ( , ) )},v z p a p q p B q p z a p q p B q p z a p q p B q p zξ = ξ ξ ξ + ξ ξ ξ + ξ ξ ξ%             

3 1 1 1 2 2 2 3 3 3( , , ) ( , ) exp( ( , ) ) ( , ) exp( ( , ) ) ( , ) exp( ( , ) )},v z p b p B q p z b p B q p z b p B q p zξ = ξ ξ + ξ ξ + ξ ξ%                                  

2 1 1 2 2 3 3( , , ) { exp( ( , ) ) exp( ( , ) ) exp( ( , ) )}z p B q p z B q p z B q p zφ ξ = −ξ ξ + ξ + ξ% .                                                                 (11) 

To obtain the unknowns 
iB , 1,2,3i = , we apply the Laplace and Fourier transforms on the initial conditions (6)   

0( , ,0)i iv z vξ =% % , 1,3i = , 
2 ( , ,0) 0x yφ = .                                                                                                                         (12) 

The transformed quantities are functions of z , the parameters of Laplace and Fourier transforms p and ξ , and are of 

the form ( , , )f z pξ . To obtain the function ( , , )f x z t , first we invert the Fourier transform by using 

0

0

1 1
( , , ) exp( i ) ( , , )d {cos( ) i sin( ) }d

2
ef x z p x f z p x f x f

∞ ∞

−∞

= − ξ ξ ξ = ξ − ξ ξ
π π∫ ∫% ,                                                                    (13) 

where ef  and 0f  are even and odd parts of the function ( , , )f z pξ% respectively. Expression (13) gives the Laplace 

( , , )f x z p of the function ( , , )f x z t .                              

 

 



 126

4. THE YOUNG’ MODULUS OF THE COMPOSITE 
          

Consider a laminated 2D composite plate which occupies the region [0, ]x L∈ , [ , ]z c c∈ − , is made up of alternating N  

aluminum and auxetic material layers, normal to the direction x  of wave propagation (figure 2). The layers are parallel, 

planar, periodical, across which the displacements are continuous. The length of each layer is l . The interfaces between 

the layers are located at nl , 1, 2,...,n N= , and each joint has two faces identified by +  and − . Choose coordinates so 
that the waves lie in the ( , )x z  plane. The plate is assumed to be in plane strain and to support waves running along the 

x -direction. Suppose that all material constants are functions of x . The continuity of solutions 1v , 
2v  and 

2φ  at the 

interface nl is given by 

1 1 1 1

, , , ,
i i

v nl z t v nl z t
c c c c

− +   ω ω ω ω
ω = ω   

   
, 1,3i = , 

2 2

1 1 1 1

, , , ,nl z t nl z t
c c c c

− +   ω ω ω ω
φ ω = φ ω   

   
,                                             

for 1, 2,...,n N= . To predict Young’ modulus from the Lamé elastic constants λ , µ , we have the formula which is not 

valid in our case  0

(3 2 )
E

λ + µ µ
=

λ +µ
. We are interested in knowing the influence of  the Cosserat rotation modulus κ , 

the Cosserat rotation gradient moduli , ,α β γ , and the chiral elastic constants , 1, 2,3iC i = , on the effective Young’ 

modulus value of the laminated plate. The material constants 
1 2 3{ , , , , , , , , }C C C C= λ µ κ α β γ% for this laminated composite 

are periodic functions of x , ( ) ( )C x P C x+ =% % , where P  is the period equal to the length of the basic cell for the 

composite 2P l= , where 2l  is the period represented by the length of the basic cell for the composite.  

 

Figure 2: Sketch of the composite plate. 

We find           

( )E F C E′ ′= +% , 2(2 )(3 2 ) 1

(2 2 ) 2
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E p
′ ′ ′ ′µ + κ λ + µ + κ

′ = +
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( 1)
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′ −
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2
2 1 2 3

0

( )
1

( 2 )( )

aux aux aux

aux aux aux aux

C C C
K

+ +
′ = +

′ ′λ + µ + κ α +β + γ
,                                                                                                                  (15) 

where  
alC%  are the aluminum constants and 

auxC% ,  the auxetic constants. The function ( )F C ′%  is numerically determined 

only. 

Figure 3 represents the variation of the homogenized Young’s modulus with respect to the volume fraction θ  of 

aluminum and Poisson’s ratio ν  of the auxetic material, for N = 15 alternating aluminum and auxetic layers. In this 

simulation, the Young’s moduli are 109 GPa for aluminum and 1.55 GPa for auxetic material, respectively.  

To continue the curves in the region 0ν > , an equivalent material with positive Poisson’s ratio is introduced to replace 

the auxetic material. The curve 1θ → corresponds to a laminated plate made of 15 alternating aluminum and equivalent 

material layers. This curve is situated below the curve θ = 0.8. According to this variation, two values for Poisson’s 

ratio correspond to the Young’s modulus of 109 GPa, namely ν = − 0.23 and ν = 0.34. The last is the Poisson’s ratio 

for aluminum.  

We observe that Young’s modulus is increasing with respect to θ  from 2 GPa, to about 150 GPa, having a maximum 

value for θ = 0.8, [ 1, 0.3) ( 0.05,0.4]ν∈ − − ∪ −  and 0.3θ = , 0.3 0.05− ≤ ν ≤ − .  
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Figure 3: The homogenized Young’s modulus variation with respect to Poisson’s ratio of the auxetic material and  an 

equivalent material with positive Poisson’s ratio. 

 
Figure 4: Poisson’s ratio versus axial strain. 

 

The Poisson’s ratio depends of strain. The variation of the Poisson’s ratio with respect to axial deformation in tension 

and compression is plotted in figure 4. The results shown in this diagram by solid lines are qualitatively similar to the 

experimental results reported in [18]. In this figure, dashed lines refer to the cases of classical isotropic linear elastic 

solid  ( 0α = β = γ = κ = ,
1 2 3 0C C C= = = ).  

 

 
3. CONCLUSION 
 

In this paper, the re-entrant cell structures are modeled with chiral Cosserat elasticity which admits degrees of freedom 

not present in classical elasticity. Negative Poisson's ratio materials easily undergo volume changes but resist shape 

changes and may thus be viewed as the opposite of rubbery materials, or antirubbers. 

The estimation of Young’s modulus for a laminated periodic structure made up of alternating aluminum and auxetic 

layers by Laplace and Fourier techniques, is the main aim of this paper. The behaviour of such materials is interpreted 

in the light of Cosserat elasticity, by considering the rotation of points in the material, and a couple per unit area or 

couple stress.  As a result, the auxetic material implies a stiffening effect leading to increased Young’s elastic moduli. 
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