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Abstract: This paper analyses the axially loading of rubber blocks with circular cross section whose ends are rigidly bonded. The present paper uses the expressions for the apparent Young’s modulus of the blocks of long and circular cross section in analyzing the radial and tilting stiffness of the bonded rubber blocks at the axial loading. Moreover, the total axial deflection of the loaded block and the stress distribution within it are evaluated and the deformed profile of the block with a circular cross section is presented. 
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1. Introduction
In the wide range of modern engineering environments there are used many types of rubber mountings. Important applications include the reduction of traffic – induced movement and the seismic isolation of vulnerable buildings, the flexure of bridges and the protection of vibration – sensitive instruments. Typically they often involve rubber blocks bonded to rigid metallic end plates. The methodology is similar to those developed in the papers [3,8,9,10].  Rubber, which belongs to the group of materials called polymers, is included in a unique group of materials which may be identified by their ability, under certain conditions to undergo large deformations and recover almost completely and instantaneously after the release of the deforming forces [6, 7, 11]. The paper [5] presents and develops a variation method based on Lagrange’s principle to determine a the relation between displacement and compression tension of the metal – rubber disk. Papers [1, 4] present experimental methods for determination of the mechanical static and dynamic features, by determining constitutive models for the rubber materials. The behavior at compression of the metal-rubber disk was presented in papers [1,5,10]. Determination of metal rubber jack in radial displacement with the analytic method have been presented in [10] and in paper [5] their resistance was estimated. The object of this paper is to predict the stiffness and stress distribution created when axial loads are applied.
2. Formulation of the problem and solution

Let us consider a rubber block of circular uniform cross sectional area A of radius R and the axial height H relative to an origin O, a cylindrical polar coordinate system (r,θ,z) established with Oz along the axis of the disk. The plane ends of the disk are at z = 0 and z = H and it is bounded by the planes as shown in Fig.1. Suppose the end z =0 of the block is held in a fixed position and the end z = H is subjected to an axial load of constant magnitude F. A general point P related to the cylindrical polar coordinates has location defined by (r,θ,z). It is assumed that the rubber is isotropic, homogenous and incompressible. At the same time, we admit that the deformations are sufficiently small for the classical linear theory to be applicable. The axial displacement is calculated by the superposition of the displacements arising in two separate specified loading situations as shown in figure 2. In case A the block is subjected to an axial tensile load and on the lateral surfaces are applied axial symmetrical uniform distributing loading p for warning lateral displacement. In this case the displacement of the plate z = H is 
[image: image2.wmf]A

l

D

. Thus, in case B the same block is loaded on its lateral surfaces and subjected only to lateral loading on the surface r = R by a radial uniform loading – p equal and opposite to that in case A (Fig.2). 
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Figure 1: Cylindrical rubber block
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Figure 2: The calculation scheme


The load is symmetric relative to z-axis. In case B, the applied loading axially extends the block is 
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. By superposition the total axially displacement is given by 
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, with the effects of lateral loadings canceling out. The displacement components at the point P are denoted by u, v and w and the strain and stress components by 
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where i,j =  r, θ, respectively z, axis directions. 

In first case A, the magnitude of the axial stress is F/A and with p = F/A, the block is everywhere in a state of hydrostatic tensile stress, whose magnitude 
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and the deflection of the end at z = H is given by 
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 where K is the bulk modulus of the rubber. 

In the loading case B, we assume that the block can be considered as being long and for small strains, the assumption of incompressibility implies that 
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 and we suppose that each cross section plane z = constant within the block remain plane during the deformation. So the displacement components at the point P are


v = 0,       
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(2)
It follows from conditions (2) and the incompressibility condition that 
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 and, since u = 0 at r = 0 for all values of z, it obtains
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(3)
The equilibrium equation that must hold in the radial direction [10] is
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(4)
The non-zero stress components within the block can now be written in terms of w and its derivatives. It substitutes the equation (3) into the constitutive equations, we obtain
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(5)
where E is the Young’s modulus and the equilibrium equation (5) gives
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(6)
which must satisfy the boundary condition that p = - F/A at r = R.

Integrating of the equation (8) with  p = - F/A at r = R, and substituting into the second equation of (5) yields
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But, there is no externally applied axial force 
[image: image24.wmf]ò

=

R

z

rdr

0

0

s

 which leads to the governing differential equation 
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(8)
Since the rubber is bonded to rigid end plates, u = 0 at z = 0 and z = H, and thus, from equation (2) 
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. Moreover the end at z = 0 is fixed, so  w = 0   at   z = 0.







The solution of equation (11) that satisfies the conditions from above can be written as
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where  
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. The displacement 
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, through which the end of block at z = H is



[image: image30.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

=

D

2

2

1

H

th

H

EA

FH

B

b

b

l

.







(10)
The axial end deflection 
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 of the block when it is subjected only to axial load F is given by
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(11)
Adopting the notation of [7] , the equation (11) can be written in terms of the apparent Young’s modulus 
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 it is possible to write
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(12)
where 


[image: image36.wmf]H

R

S

2

=

,









(13)
is the shape factor. In the case of incompressible rubber, 
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and the equation (12) has the form
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(14)
The approximate expressions for the apparent Young’s modulus, Ea’ of bonded incompressible rubber blocks subjected to compression is given in [7]
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(15)
This expression is used in the engineering industry for assessing the axial stiffness for rubber blocks of circular cross section, where E is Young’s modulus of the material of block. From the equation (20) it follows the approximation expression 
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(16)
The relation (17) provides a better estimate of the exact representation (14) than (15).

From (3) and (9), the deformed profile of the curved outer surface of the block can be deduced 
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(17)
The stress components within the block that are created by applied axial load F alone can be determined in the form
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The maximum values of the stress components occur on the bonded ends z = 0 and z = H,
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Figure 3: Deformed block shape in terms of shape factors
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Figure 4: Shear stress distribution on r direction in terms of shape factors


The figures 3 and 4 present the deformed shape of the rubber block for r = 40 mm, H = 40 mm and H = 20 mm. With the increasing value of the shape factor, an increase of the curve radius of the block profile can be noted. As the radius value increases and the height value decreases, one can conclude that the shear stress values at the rubber block’s ends with rigid plates are decreasing (fig. 4).

3. Conclusion

The expressions presented for the determination of the deformed shape (17) and for the determination of the tensions (18) in rubber blocks subjected to traction / compression give good results that can be used in design. The shape of the deformed for the rubber block with margins made of rigid plaques is described in the relation (17) in which one can change r = R. The maximal values of the tensions are found corresponding to the rigid plates positioned at the end of the rubber block. The normal tensions have large values corresponding to the symmetry axis and they are null at the external rim. 

The tangential tension 
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has a linear distribution of the tension in the direction of the R axis. In the middle of the rubber block the tangential tension is null. 
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