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ABSTRACT  – The paper presents considerations about the utility, suitability and limits of the 
coast-down experimental test in the automotive research. That test consists in launching of a 
motor vehicle from a certain speed with the engine disengaged and ascertaining of the current 
speed and distance covered during the free rolling, till vehicle stops. 

First it is indicated a modality to determine by computation the vehicle kinematics. There are 
presented the vehicle resistances, the assumptions and the values influencing the analyzed 
process. Then, there are established the mathematical equations necessary to ascertain the speed 
and distance during cost-down. By the analysis of the different factors influences it can be 
determined the necessary precision of measurements, so that the results of the test might be 
conclusive. 

Reciprocally, when experimental data exists, mathematical methods based on regression are 
presented to estimate the vehicle movement resistances. 

In the paper are presented data obtained using coast-down method with different test vehicles 
and in various road conditions. The results include estimated values for the rolling resistance 
coefficient and aerodynamic drag coefficient. New ideas for additional valorisation of the 
method are also indicated. 

INTRODUCTION 

Coast down is one of the most frequent tests for motor vehicles and consists in vehicle launch 
from a certain speed with the engine ungeared, simultaneously recording the speed and 
travelled distance until vehicle stops. This can be done for different reasons, mainly targeting 
to obtain valuable information about the general condition of the vehicle and about its 
interaction with the environment. 

One main aim of this test is to evaluate the values of the resistant forces acting on the vehicle 
at certain speed and road conditions, so that to have the possibility to reproduce them on 
proving stands (dynamometers with or without rollers) for the measuring of fuel consumption, 
chemical or noise pollution or for other purposes. Another aim is to determine some possible 
abnormalities in the functioning of some subassemblies of the motor vehicle, i.e. to establish 
if the vehicle technical condition is acceptable in order to subject it to other, more complex, 
tests. The requirements to perform this kind of coast down tests are standardized [1], [2]. The 
value of coasting (free running) distance is then compared to values corresponding to some 
similar or closely related types of vehicles. 

But these figures are not always available, especially when testing new models, which led to 
the idea of determining by computation the value of coasting distance and the vehicle’s 
general dynamics. What follows is a briefing of the procedure proposed by the authors and 
that was used to realize a computer program. The results of simulation were confronted with 
experimental results, the model and the adopted hypothesis being satisfactory. The algorithm 



CONAT20104030 
 

156 
 

is likely to be improved as well as more new ideas and experimental data will be 
accumulated. 

THEORY OF COASTING VEHICLE DYNAMICS 

To obtain the movement equation of the vehicle, some simplifying hypotheses and a simple 
dynamic model were adopted [3]. The dynamic model was imagined based on the assumption 
that the motor vehicle consists of: 

• mass mt in translation motion; 

• equivalent flywheel Inw, corresponding to the non-driving wheels (kinematically 
unconnected to the transmission); 

• equivalent flywheel Idw, corresponding to the driving wheels and to all rotating parts 
kinematically connected to them (up to the shaft and toothed wheels of the gearbox). 

For the coast down test will be assumed a road not too bumpy. Also, because the engine is 
disconnected, the wheels are not loaded with heavy moments. In these conditions, it can be 
assumed constant dynamic radius rd for the vehicle wheels and very small tyre-ground slip. 
That means no energy loss will be generated by slip. 

During moving, the vehicle interacts with the environment. As a result, some forces acts 
against it (figure 1): the vehicle gravitational force (the weight) W, inducing the reaction 
forces Z1 and Z2 normal to the road surface which, in turn, determines the rolling resistance 
forces Fr1 and Fr2 on the wheels of the front and rear axles, respectively; the air resistance 
force (aerodynamic drag) Fa; the driving force at the wheel Fw that propel the vehicle. 

 
Fig. 1 – The external forces acting on a rolling vehicle 

To obtain the equation of the vehicle motion, will be applied the principle of energy 
conservation, that states the derivative (the instantaneous change rate) of the vehicle’s total 
mechanical energy is equal with driving power Pw minus the total power losses: 

dt

dEtot  = Pw - ∑Ploss (1) 

The vehicle’s mechanical energy consists on the kinetic energy Ek of the parts in translation 
and rotation and on potential energy Ep, determined by the vehicle altitude: 

Etot = Ek + Ep = Ekt +Ekr + Ep (2) 

The kinetic energy Ek include the one of the translational mass and those of any rotating part j 
kinematically connected with the wheels: 

Ek = ∑+
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where ωw = v rd is the rotation speed of the wheels driving. The vehicle behaves as having a 
bigger mass, the apparent mass map: 
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 is the coefficient of the rotating parts influence and for cars is 

generally equal with 1.03…1.04. 

The potential energy of the vehicle is: 

Ep = mt g h (5) 

where g = 9.81 m/s2 represent the gravitational acceleration and h the altitude. 

Introducing equations (2)…(5) in equation (1) obtains: 

dt

dEtot  = map v 
dt

dv
 + mt g 

dt

dh
= map v a + mt g v sinα = Pw - ∑Ploss (6) 

where 
dt

dh
 ≈ 

dt

ds
sinα = v sinα and a is the vehicle’s instantaneous acceleration. 

From the equation (6) results: 

map a = Pw/v - (∑Ploss)/v  - mt g sinα = Fw - (Rr+Ra) - Rg (7) 

that permits to calculate the vehicle’s acceleration, in the well known form indicated in the 
literature (for example [4], [5]). 

Because the engine is out of gear, at coasting vehicle the force Fw become negative due to the 
friction in axle mechanisms, drive line (if any) and transmission: 

-Fw = Rf = Mf/rd (8) 

where Mf represents an equivalent friction moment applied to the driving wheels. 

Replacing equations (8) in equation (7) obtains: 

-a = d = (Rr + Rg + Ra + Rf)/map    (9) 

which gives the vehicle deceleration d = -a during the coast down test. 

In the equation (7)…(9), Rr, Rg and Ra represent, respectively, the rolling resistance, the grade 
resistance and the air resistance, while Rf is the resistance due to the drivetrain frictions. 

The formula that allows computing the air resistance (aerodynamic drag), will consider not 
only the vehicle-ground speed v, but also the wind velocity component along the running 
direction ([4], [5]), obtaining: 

Ra = 
2

1
 ρ cd A (v + w)2 (10) 

where ρ is the air density; cd – aerodynamic drag coefficient of the motor vehicle; A – frontal 
area of the vehicle; w – wind velocity in longitudinal direction. 

Since the atmospheric conditions (pressure p and temperature tC) will be recorded for the test, 
the density of the air is determined according to them: 

ρ = ρ0
273
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where ρ0 = 1.225 kg/m3 is the density of the air under standard conditions (t0 = 15°C and p0 = 
760 mm Hg = 1 bar = 101325 Pa). 

The grade resistance, which is in fact the gravity’s component parallel to the ground, is 
computed by the well known relation: 

Rg = W sinα = mt g sinα (12) 

where: W = mt g is the vehicle weight and α – the longitudinal slope angle of the road. 

The rolling resistance is a mainly a consequence of the hysteresis (loss of energy, transformed 
partly in heat) manifested under deflection by the pair tyre-ground and by the suspension 
dampers and bushing. Its value can be computed with the equation: 

Rr = W f cosα = mt g f cosα (13) 

where: W cosα – is the vehicle’s weight component perpendicular to the ground surface 
(pressing the tyres) and f is the (dimensionless) coefficient of rolling resistance. Experiments 
and finite element method simulations for tyre dynamic behaviour indicate an increase of the f 
value if the road is bumpier or the vehicle speed is higher [4], [5], [6]. For the moment, it isn’t 
a generally accepted formula to compute the rolling resistance coefficient as function of 
vehicle speed, but practically all the references indicate a linear increase with speed for small 
and medium speeds (reported to the maximal admitted tyre working speed). 

As the driving speed has moderate values during cost down running, the rolling resistance 
coefficient will be considered as a linear function of vehicle speed [4], [5], [6], [7]: 

f = f0 + f1 v (14) 

where f0 and f1 are considered constants. The procedure [6] recommends the value f1 = 0.2 s/m 
in the case of high inflation-pressure truck tyres, while f0 varies with respect to the road 
condition, having an approximate minimum value of 0.0076 for quality roads. 

In the same procedure [6], the influence of the suspension movements, generating 
supplementary losses mainly in the shock absorbers, rubber bushing, joints and tyres, are 
taken into account as an equivalent slope to overcome, greater if the road is more uneven, but 
unchanged with the vehicle speed. Due to the rapid and un-linear increase of the dampers 
forces with the speed, this hypothesis seems to simplify to much the true phenomenon and 
must be considered with prudence. Also, during tests, this suspension’s energy loss is likely to 
appear as a supplementary rolling resistance. In this case, the equation (14) must be replaced 
with another, more complicated, f(v) function. 

The last resistance to be considered is the one generated by the drivetrain frictions. This sum 
the frictional effects considered for the driving and non-driving wheels: 
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where Mf represents an equivalent friction moment applied to the driving wheels. 

In the paper [3] were presented in more details the main causes of the drivetrain frictional 
resistance: the moment of friction losses in the wheel bearings; the moment of friction in the 
transmission, drive line and drive axle’s mechanisms (final drive and differential), which sum 
the frictions in the bearings, gearings and sealing elements, but also the effects of energy 
consumed for oil bubbling. 

The frictional torques on the driving and non-driving wheels, Mfd and Mfn can be measured if 
a dynamometer without rollers is available. These torques are dependent (in a complex way), 
on the rotational speeds of the wheels (related directly with the vehicle speed). If another 
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dynamometer, with rollers in this case, is also disposable, the sum of the drivetrain friction 
torque and rolling resistance torque can be measured. This summated torque depends on 
vehicle speed, but has a predominant linear component [7]. Aware of the extreme 
approximation, the drivetrain frictional resistance will be assumed as: 

Rf = Rf0 + Rf1 v (16) 

where Rf0 is the drivetrain resistance at very low speeds and Rf1 is the increasing rate with 
speed v of these resistance. 

Now, introducing in equation (9) the equations (10), (12), (13), (14) and (16), the expression 
of the vehicle deceleration during coast-down can be presented as a final function of speed: 

d = [mt g (f0 + f1 v) cosα + mt g sinα + 
2

1
 ρ cd A (v + w)2 + Rf0 + Rf1 v]/map =  

= C0 + C1 v + C2 v2  (17) 

where: 

C0 = [mt g (f0 cosα + sinα) + 
2

1
 ρ cd A w2

 + Rf0]/map 

C1 = (mt g f1 cosα + 
2

1
 ρ cd A w + Rf1)/map  (18) 

C2 = (
2

1
 ρ cd A)/map 

For the first two equations (18) it observes that the unconsidered wind speed will modify 
apparently the rolling resistance coefficient, as well the drivetrain frictions. A similar 
unwanted effect can have a road which isn’t quite horizontal. 

 If assumes a flat road (α = 0) and no wind (w = 0), the first two equations (18) simplify: 

C0 = f0 g/δ + Rf0/map 
C1 = f1 g/δ + Rf1/map  (19) 

COAST-DOWN MATHEMATICS 

If precise and sufficient experimental data exists about the vehicle deceleration, equation (17) 
can be used to find the unknown constants C0, C1, C2 and then, based on these values, to 
determine important vehicle dynamics figures as coefficients of rolling-, aerodynamic- and 
drivetrain drag. Before the coast-down tests, the vehicle weight, frontal area and wheels 
radius must be measured and the equivalent moments of inertia must be estimated (using 
experimental methods, CAD programs or a combination of these). That will permit to 
calculate the coefficient δ of the rotary masses influence and the apparent mass map. Also, the 
atmospheric data (pressure, temperature, wind speed) must be recorded. 

Pulling slowly on a horizontal road (at least two times) the vehicle at different weight levels 
W=mt g and measuring the necessary forces Fp, the coefficient of the rolling resistance at low 
speed f0 and the drivetrain friction force at low speed Rf0 can be calculated. Indeed, from the 
equation (7) results: 

map a = 0 = Fp - Ff - Rr= Fp - Rf0 - mt g f0 (20) 

The values f1 and Rf1 can be obtained repeating the procedure at a higher speed or, better, 
measuring torques on dynamometers. Lastly, the aerodynamic drag coefficient can be 
obtained if calculates first the C2 coefficient of the equation (18). 
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To find the coefficients C0, C1, C2, there are necessary three different pairs of experimental 
values (Vi,Di), which means to find the coefficients of the interpolation polynomial of second 
degree:  

di(v) = C0 + C1 v + C2 v
2 (21) 

passing trough these points i. Generalising, the interpolation will be adopted to find the 
coefficients of a function with known or presumed shape, considering a number of 
experimental points equal with the number of unknown parameters of the function. 

The “method Bosch” [8] bases on that, assuming di(v) = C0 + C2 v2, i.e. a parabolic 
dependence of d on v, with minimum deceleration for very small speed (it assumes constant 
value for the coefficient of rolling resistance, no drivetrain drag and negligible rotary inertia). 

Because the experimental data are affected by errors, a better solution consists in replacing 
interpolation with regression (approximation) functions, because this way will be used the 
information contained by all measurement data. Considering equation (17), that means to find 
the polynomial of second degree  

da(v) = C0 + C1 v + C2 v
2 (22) 

that is the best fit of number of experimental data points (Vi,Di), which is bigger than the 
number of function’s unknown parameters (three in this case, C0, C1, C2). There are many 
possibilities to realise the “fitting” (best approximations) of the presumed function with the 
experimental data, each based on different assumptions.  

The authors adopted the most used method – the best fit in the least-squares sense. That 
method bases on the next suppositions: the argument (the first value of the pair, v in this case) 
is not affected by errors; all the errors pertain to the function (the second value of the pair, d 
in this case); the distribution of the errors is a normal (Gaussian) one. Normally, these 
conditions are not fulfilled when records kinematic data, and may be another cause for some 
less precise or erratic results. 

Most of the commercial mathematical computer-programs have implemented this kind of 
Gaussian regression as basic procedures, at least for the most common mathematical 
functions, as is the nth order polynomial. 

To generalise more the application of the cost-down method, the authors developed an 
algorithm which can be used, with only few modifications, for any function form with any 
number of unknown parameters. Starting from coarse estimations of these parameters, an 
iterative process, based on Levenberg-Marquardt method, will find estimations (“fitted” 
guesses) of the parameters. In other words, the procedure will change the “shape” of the 
function da(v), minimizing the sum of squared errors: 

S(C0, C1,… ) = [ ]∑ −
i

iia DCCVd 2
10 ,...),,(  (23) 

until the change of that sum from one step to other will be smaller as an imposed tolerance. 

COAST-DOWN EXPERIMENTS 

To obtain data about the vehicle kinematic behaviour during coast-down, many acquisition 
systems can be used, as accelerometers or time-speed-distance recorders. Each can be more or 
less suitable for that test. For coast-down acquisition, the authors have used different systems: 

• three “fifth-wheel” type time-speed-distance recorders (one Peiseler and two build “in 
house”) [3], [9]; 
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• three GPS-based acquisition devices (Garmin GPSmap 60CSx – 1 Hz, Racelogic 
Vbox III – 100 Hz professional device and, also a system build “in house” [10], DS-5 
with sensor Garmin GPS 18x-5Hz) [10], [11], [12]; 

• one CORRSYS-DATRON's non-contact Correvit system with optical sensor; 

• one on-board acquisition systems used for the vehicle’s ABS, with information 
available at the CAN bus and accessed by the OBD-II interface [10], [12]. 

The sample rate of these systems varies from 1 Hz to 100 Hz. The data available are the time, 
the speed and the distance (excepting the vehicle’s computer). The Correvit system offers also 
the acceleration. The filtering methods, excepting the “in house” systems, are less- or un-
known. Practically, all systems used in these work measure the time and the distance. Then, 
by numerical derivation, it calculates the speed. Some GPS-based systems (as Racelogic 
Vbox) use also the Doppler effect to diminish the speed errors. Excepting the Correvit system, 
that repeats the derivation of the speed to obtain the acceleration, the use of all other presented 
systems needs numerical methods to calculate the acceleration. 

 
Fig. 2 – Least-squares approximation of experimental data (107 V-D points)  

with a second degree polynomial: d(v)= 0.135+0.00104 v + 0.00025 v2 (v in m/s, cd=0.342) 

 
Fig. 3 – Least-squares approximation of experimental data (91 T-V points) with a tangent 
function having the derivative: d(v)= 0.133+0.00140 v + 0.00024 v2 (v in m/s, cd=0.342) 

In this work were tried (with almost similar results) two formulas for numerical derivative, 
needing respectively three and five neighbouring points (Ti,Vi) [13]: 
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Figure 2 shows how a second degree polynomial approximate, in the least-squares sense, the 
“cloud” of experimental points (Vi,Di). 
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In the paper [7] it is indicated the function:  

v =-b/(2 a) – r tg(u t + w) (25) 

as a solution of the equation (9). The results plotted in figure 3 were obtained using this 
“fitting” function and the described algorithm, that are practically similar with the results of 
“Takagi” method [7] and with the ones of second-degree polynomial regression. The only 
observed need is to have records with (almost) constant step on time for the tangent function 
and on speed for the polynomial one, to be closer to the requirements of least-squares method. 

CONCLUSIONS 

The paper presents theoretical and practical considerations regarding the modality to valorise 
the potential of the coast-down test to obtain valuable vehicle characteristics, in an easy way 
and with accessible means. The use of this experimental method is facilitated by the 
progresses in data acquisition systems, mainly GPS based, which ensures high accuracy at an 
affordable price. The algorithm presented is applicable for any type of function describing the 
vehicle movement. The acquisition errors and the change of wind speed and road slop are the 
main items affecting the coast-down test accuracy. 
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