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Abstract: The present paper deals with the state of stress and deformation at thin circular plates subjected to symmetrical 

axial loading. The loading is a bending owing to the uniform distributed loads which act perpendicular to the mean surface 

of the plate, simultaneous with a membrane load (loads acting in the mean plane of the plate). This type of problem is solved 

by help of equations which result from the equilibrium of a plate’s element and from the boundary and continuity conditions 

of the mean surface of the plate. 

One considers the following two cases: 

- the membrane stresses are small comparatively to the bending stresses; in this case the calculus is precise enough if we take 

into account only the mean plane extensions which will be superposed over the effects given by the transversal bending stress 

q; 

- the membrane stresses are considerable and can not be neglected; in this case, second order calculus is required. 
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1. GENERAL CONSIDERATIONS 
 

The present paper deals with the state of stress and deformation at thin circular plates under symmetrical axial 

loading. The loading is a bending owing to the uniform distributed loads, which act perpendicular to the mean 

surface of the plate, simultaneous with a membrane load (loads which are acting in the mean plane of the plate). 

This type of problem can be described by equations which result from the equilibrium of an attached plate 

element and from boundary conditions. In order to solve these problems, different methods have been suggested 

and used: Love’s displacement function, the use of the working lengthening tube of Popkowitsch, etc. Uses of 

the finite element method and of the finite difference method have shown a great usefulness, leading to very 

good results. The behavior of the structures is described by help of a stiffness matrix, in the case of the 

displacements method, by a suppleness matrix, in case of the forces method, or by a stiffness matrix, in the case 

of the joint method. The above mentioned matrix are established using the finite element method, which is a 

method of structures division and which requires the similitude of the model’s behavior to the real structure. The 

displacements method is adequate for the symmetric structures and symmetric loaded structures. The 

displacements are defined in the interior of an element by polynomials containing a number of parameters equal 

to the number of the unknown displacements number of the element nodes. One gets the basis equations of this 

method by help of the energetic method, which is based on the principle of the constant value of the elastic 

potential. In calculus one may consider that the material remains in the limits of Hooke’s law validity, when 

external loads are acting upon it; a linear condition between stresses and deformations is required. At 

symmetrical axial state of stress correspond symmetrical axial states of deformation and the calculus can be 

made regarding the mean plane. Under these circumstances, the general 3-D problem can be reduced to a 2-D 

problem, where the stiffness is expressed by help of a mean section displacements. One divides the continuous 

structure into a system of symmetrical axial elements, whose unit element is defined as a plane finite element 

which rotates around the symmetry axis of the structure. 

 

2. GREAT DISPLACEMENTS. EQUATIONS OF EQUILIBRIUM  
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Fig. 1. Displacements Fig. 2. Displacements 

 

On basis of the notations from Fig. 1, one calculates the length after deformation of an element whose initial 

length is dx: 
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where the approximation of the square root does not influence the calculus or the final results accuracy. One 

mention the fact that the mean plane deformations allow to neglect the term 2
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In order to get the angular strain corresponding to the deformation w, normal to the mean plane, one study the 

case of the perpendicular elements of length dx and dy (AOB=/2), Fig. 2. The wanted angular strain is given 

by the subtraction of the final value of the angle AOB (after deformation), A1OB1 from the initial angle 

AOB, plus the share of angular deformation brought by the linear displacements u and v (displacements in the 

mean plane of the plate). One writes the cosine of the angle A1OB1 as a dot product, getting: 
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One takes into account the share of the linear displacements u and v; one finally get the wanted angular strain: 
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From the specific literature (elastic theory), we have the expression of the mean surface curvatures: 
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If one works in plane coordinates, Fig. 3, the equations of the strains and curvatures are easier. Equations (2) 

and (4) become: 
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The load is performed in the field of linear elastic plastic 

deformations, so that between stresses and deformations 

following equations are valid (Hooke’s law):    
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(7) 

One analyses equations (2) and (3). From these equations we 

get the deformations from the mean plane, these deformations 

being membrane deformations. One calculates the second 

derivative of the equations (2) and (3) with respect to y and to x 

and one neglects the high order infinitesimal; one derives 
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Fig. 3. Strains and curvatures in plane 

coordinate 

equation (4) with respect to x and then with respect to y. We get 

the following expressions: 
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One adds the first two equations (8) and one subtract the third one. The compatibility equation (9) yields: 
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Substituting equation (7) in relation (9) it results a relation between stresses and deformations corresponding to 

the membrane state of stress : 
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3. GENERAL EQUATIONS AT BENDING WITH CONSTANT q AND LOADING IN THE 

MEAN PLANE OF THE PLATE (FIG. 4) 
 

Further on we want to establish a calculus relation between stresses and deformations for the loading of the 

circular plate, in Fig. 4. In this case, besides the bending due to the constant load q, the plate is subjected to 

tension because of the loads No (membrane load). 

One specifies the existence of the following two calculus methods [1]: 

a) the membrane stresses are small in comparison to those due to bending; in this case the calculus is 

precise enough if we consider only the extensions of the mean plane which are superposed on the effects 

caused by the transversal load q; 

b) the membrane stresses due to the loads p are big and can not be neglected. That is the reason why the 

calculus must be continued. 

 

 

Fig. 4. a. Fig. 4. b. 

 

In order to take into account both the membrane stresses and the state stress caused by the bending loads, 

normal to the mean plane, one analyses the plate’s element of dimensions dxdy, in deformed state of the mean 

plane, Fig. 5. 

 
Fig. 5. Equilibrium of the plate’s element 
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The plate’s element in Fig. 5 is in equilibrium under the action of the shown state of stresses and deformations. 

On basis of the projections upon axes x and y, taking into account the angles in the deformed state, we get the 

following two equilibrium equations: 
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Equations (11) and (12) take simple forms, easy to use after the approximations below : 
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The equations of equilibrium for a plane plate’s element are : 


























y

yxy
x

xyx R
yx

;R
yx

    (14) 

One derives them with respect to x and to y ; by adding the yielded relations, we get : 
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One replaces equation (15) in Equation (10), which was obtained from the relation of compatibility (9). One 

gets finally : 
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In Equation (17) one takes into account the relations (11) and (12), the projections upon axis z, the curvatures 

given by relations (4) as well as the independent relations (14) and one yields the equation below  [1]: 

   
y

w
R

x

w
R2hy,xqwD yxyyxyxyxx

2









   (17) 

Equations (16) and (17) show the state of stress and deformation of the plate, under the following 

circumstances : bending under transversal loading q, taking into account both the membrane stresses and the 

massic forces (calculated on surface unit of the plate’s mean plane). 

 

The solution yields by help of numerical methods (FEM or FDM), taking into account each effective loading of 

the plate and the way the plate is supported.                                
 


