
 1 

 
 

 

 

 

 

 

 

 

 

 

COMMENTS ON THE SOLITON-LIKE INTERACTIONS IN 

NONDISPERSIVE MEDIA 
 

Valerica Moşneguţu
1
, Veturia Chiroiu

1
, Ruxandra Ilie

2
 

1
Institute of Solid Mechanics, Romanian Academy, Bucharest,  

e-mails veturiachiroiu@yahoo.com, valeriam732000@yahoo.com 
2
Technical University of Civil Engineering, Bucharest, e-mail rux_i@yahoo.com 

 

 
Abstract: Seymour and Varley [1] analyse certain media whose responses are governed by the nonlinear nondispersive wave 

equation. Any two pulses traveling in opposite directions interact nonlinearly for a finite time when they collide but then part 

unaffected by the interaction. More clearly, when any two pulses are traveling in opposite directions meet and interact they 

emerge from the interaction region unchanged by the interaction. This interaction is similar to those that occur when two 

solitons collide. The main difference is that solitons are represented by waves of permanent form whose profiles are specific.  
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1. INTRODUCTION 

 
In this work we present some comments on the properties of a coupled system of wave equations discussed by 

Seymour and Varley in  [1]    

                                                             2 ( )tt x xxy A y y  ,                                                (1) 

                                                             
3/ 2

, ( )
xyA A A  ,                                              (2) 

that govern the motion of an heterogeneous string, where ( , )y x t  is  the physical displacement, ( )xA y  a positive 

function representing the local speed of propagation, and ,   the material constants. If ( )x xy y x and 

( ( )) ( )xA y x A x , the above system of equations becomes 

2 ( )tt xxy A x y ,                                                  (3) 

3/ 2 ( )x xxA A A y   .                                          (4) 

We show that the waves described by Seymour and Varley are dispersive and dissipative. Single bounded 

solution of (2) may be written under the form 
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with ,   constants depending on ,  , and 
ie , 1,2,3i   the solutions of  the equation 3

2 34 0y g y g  
       

with constants 2 3,g g  depending on ,  . The solution (5) shows cnoidal dependence on xy , being characterized 

by the dependence of the amplitude on the argument of sn. For a certain values of ,  ,  for that 1m  , 
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,   the solution (5)  becomes 
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The solutions of  Seymour and Varley equations are also characterized by the dependence of the amplitude on 

the argument sech . The interaction (collision) of two solutions such (5) or (6) has solitonic properties: may 

propagate without change of form, being regarded as a local confinement of the energy of the wave field; at the 

collision each may come away with the same character as it had before the collision [2 -4]. Two solutions of (2) 

traveling in opposite directions interact nonlinearly and the collision is influenced by the properties of A .   
 

 

2. LINEAR VIBRATING STRING 
 

Consider 1D string motion equation 

   2 0tt xxu c u  ,                                                      (7)                                                                                        

with c  a real positive number. Let x  range from  to  . For the transverse vibrations of a string 2 /c T   

where T  is the constant tension and   the mass per unit length at the position x . For the compressional 

vibrations of an isotropic elastic solid in which the density and elastic constants are functions of x  only 

(laminated medium) 2 ( 2 ) /c     . For the transverse vibrations of such laminated solid 2 /c    . The 

characteristics are given by d / dx t c  , that are straight lines inclined to the axis at tanc   . The D’Alembert 

solution of (7) is  

  ( , ) ( ) ( )u x t f x ct g x ct     ,                                     (8)                                                                

where the functions , :f g R R  are determined from the initial conditions attached to (7)  

   
,( ,0) ( ), ( ,0) ( )tu x x u x x    .                                  (9) 

The solution (8) describes two waves ( )f x ct and respectively ( )g x ct .  The observer sees, at any moment of 

time the unchanged profile ( )f x  at the initial time 
0 0' 0t t  . This is way the function ( )f x ct  represents a 

right travelling wave or a forward-going wave with the velocity c.  For a similar reason, ( )g x ct  represents a 

left travelling wave or a backward-going wave with the velocity c. As a consequence, both waves are not 

interacting between them and do not change their shape during the propagation. These waves can be superposed 

by a simple sum, because of the linearity of (7). 

These waves can be called solitary waves, for the reason they are not changing their shapes during propagation 

process, and do not interact one with the other. 

If (7) is not linear we have the case considered in [1] for which the superposition principle is not valid. If 
1 2,y y  

are two solutions of (1), the sum between them is not a solution of (1). The function ( ( ))xA y x  is a positive 

function that represents the local speed of the propagation. 

 

 

3.  NONLINEAR VIBRATING STRING 
 

Consider the equation (1) that can governs the motion of an heterogeneous string, where y  is the physical 

displacement, and ( )xA y  is a positive function representing the local speed of propagation and verifies   

3/ 2

, ( )x xxA A A y  ,                                         (10) 

we obtain a coupled partial nonlinear differential equations for ( , )y x t and ( )A x  

         2 ( )tt xxy A x y  ,                                              (11) 

3/ 2 ( )x xxA A A y  .                                         (12) 

The characteristics are given by d / dx t A  , which equations define two congruences of curves in the ( , )x t  

plane. First step is to straighten the characteristics of (11) for geometrical representation in a space-time plane. 

To do this we define the transformation  [5, 6] 

   
0

d
( )

( )

x
z

x u x
A z

   .                                              (13) 
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From (11) we obtain 

0u

tt uu u

c
y y y

c
   ,  ( ( )) ( )c u x A x .                          (14) 

The function ( )c u  is the transformed local speed. Strictly speaking we should not use the same symbols y  in 

(12), because the function ( , )y x t  of (11-12) is not the same function as the ( , )y u t  of  (14), but this is not likely 

to cause confusion if we remember that y  may be regarded as a physical quantity in terms of ( , )x t  or ( , )u t . 

The linearized form of (14) is 

0tt uu uy y y   .                                              (15) 

Introducing the harmonic wave ( , ) expi( )y u t A ku t   into (15), we obtain the dispersion relation  

2 2ik k   .                                                    (16) 

The phase velocity of the harmonic waves ( , ) exp( )expi ( )
2

t
y u t A tkb k u

kb
  is 

2

1 1

2 2 ( 1 )
pc

kb k k k


 

  

 

and depends on k . In conclusion, the equation (11) is dispersive and  dissipative. In a space-time plane in which 

u  and t  are Cartesian coordinates, the characteristics are d / d 1x t   , and are straight lines inclined to the axis 

at 045 .  

 

 

4. BOUNDED SOLUTIONS 
  

Consider the equation (1) written under the form 

2 3 2( )A A A   ,                                                  (17) 

where 
,eA A   and 

xe y . Differentiating  (17), we have 

                                         2 3 4

2 3 4A a A a A a A    ,                                          (18) 

where 

                                   2

2 1.5a   , 
3 4a   , 2

4 2.5a   ,                                (19) 

and  0ia  , 2,3,4i  . We assume the solution of (18) in the form [7] 

( )

1 ( )

P e
A

P e





 ,                                                      (20)            

where  0   and  0   are arbitrary real constants, and ( )P e  is the Weierstrass elliptic function satisfying the 

differential equation  

2 3

2 34P P g P g   
                                          (21)

 

 
with two invariants 

2g  and 
3g  which are assumed to be real and satisfy    

                         3 2

2 327 0g g  .                                                      (22) 

So, the exact periodic solutions can be written as 

2 3

2 3

( ; , )
( )

1 ( ; , )

x

x

x

P y g g
A y

P y g g

  


  
,                                        (23) 

where  is an integration constant with known quantities 2g , 3g ,   and  . The exact bounded periodic solution 

can be obtained by replacing the Weierstrass elliptic function by the Jacobean elliptic sine function using the 

formula  

  
2

2 3 3 2 3 1 3( ; , ) ( )sn ( )x xP y g g e e e e e y        ,                          (24) 
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where   is an arbitrary real constant, and 
ie , 1,2,3i   are real roots of the equation 3

1 24 0y g y g    with 

1 2 3e e e   .  From 2 2cn sn 1   , we can express (24) in term of the cnoidal function cn. 

Thus, it results that the exact bounded periodic solution of  (18) is (5).  The solitonic form of (5) is given by (6).   

Let again consider the transformation (13). Equation (1) can be written in the form  

          ( ) ( )
d

v t Lv t
dt

 ,                                                          (25) 

where 

u

t

y
v

y

 
  
 

,   
0

2 0

u

u

L
 

  
   

,   2 ( ) uc
u

c
   .                                (26) 

We calculate ( )v t  by a sequence of linear transformations that reduce ( )v t  to a perturbation of the pulse. For 

this we define the energy of the string  

                                                 
2 2

1
d

2 ( )

u ty y
E u

c u






  ,                                               (27) 

and take a point v  in the phase-space  ( , )u ty y  

q
v

p

 
  
 

,  ( ) ( ,0)uq u y u ,  ( ) ( ,0)tp u y u                              (28) 

 

The inner product is derived from the energy quadratic form (27)  

   1 1

1 2 1 2, ( , )v v C v C v   ,  
( ) 0

0 ( )

c x
C

c x

 
 
 
 

,                         (29) 

   1 2 1 2 1 2

1
( , ) [ ( ) ( ) ( ) ( )]d

2
v v q u q u p u p u u





  .                            (30) 

The operator L  is screw-symmetric with respect to the inner product (29) and so there exists a one-parameter 

group ( )V t  of orthogonal transformation determined by 

, ( ) ( )tV t LV t ,  (0) 1V  ,                                         (31) 

so that ( ) ( )v t V t v   is a solution of (31). The method is based on the decomposition of the phase-space 

( , )u ty y into a pair of complementary subspaces. This induces a decomposition of each initial datum into a 

forward propagating part and a backward-propagating part.  

In the homogeneous case ( 0)  , (1) is reduced to 0tt uuy y   and the solution are expressed as a sum of two 

waves ( )f x t  and ( )f x t  that propagate independently. In the heterogeneous case the both pulses are 

coupled by 0   considered as a perturbation.  

So, we take  
1 1( ) ( )V t CR V t RC   , ( ) exp( )V t tL ,                                    (32) 

1 1L CR LRC   , 
u

L
u

  
  

  

 ,                                        (33) 

with 

1
2

2

1
2

2

R

 
 

 
 
 
 

. It results that 1 1( ) ( )V t RC V t CR  , 1 1L RC LCR  . We see that L  can be written as a 

sum of two operators to separate the contribution of the coupling term 0    

 0L L   ,  0

0

0

u
L

u

 
  

 

 , 
0

0

 
   

 
.                          (34) 

In the homogeneous case we have 0   and  
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( ) 0

( ) ( ), ( )
0 ( )

T t
V t U t U t

T t

 
   

 

   ,                                   (35) 

where ( )T t  is right translation by t  

  [ ( ) ]( ) ( )T t f s f s t   ,                                              (36) 

and ( ) ( )T t T t   is left translation by t . The initial conditions (29) can be written under the form 

( ,0) ( )y u u  , ( ,0) ( )ty u u  .                                   (37) 

For 0   the solution of 0tt uuy y   is written as the D’Alembert formula 

1 1
( , ) [ ( ) ( )] ( )d

2 2

u t

u t

y u t u t u t z z





       .                           (38) 

Our aim is to obtain a similar formula for the inhomogeneous case 0  . 

For this we use the well-known perturbation formula [8] 

0

( ) ( ) ( ) ( )d

t

V t U t U t s V s s       .                                  (39) 

From this we can obtain an infinite series for ( )V t  by an iteration scheme 

( 1) ( )

0

( ) ( ) ( ) ( )

t

n nV t U t U t s V s ds        ,      (0) ( ) ( )V t U t  .                    (40) 

We take account that ( ) exp( )V t tL  from (32) maps forward-going data into forward-going data and backward-

going data. So, we write 

( ) ( )
( )

( ) ( )

FF FB

BF BB

V t V t
V t

V t V t

 
  
 

 


 
.                                               (41) 

Here, 
FFV maps forward-going data into forward-going data, 

FBV  maps forward-going data into backward-going 

data, 
BFV  maps backward-going data into forward-going data and 

BBV maps backward-going data into backward-

going data. From (35)
2

 and  (40) we obtain for 
FFV  

1

1 1 2 2 1 2

0 0

( ) ( ) ( ) ( ) ( ) .....

tt

FFV t T t T t t T t t T t dt dt                                (42) 

The first term in (42) is simply translating a forward-going datum into a forward direction. The integrant  

1 1 2 2( ) ( ) ( )T t t T t t T t     translate a forward-going datum in the forward direction from time zero to time 
2t  

when it is reflected. On reflection it is multiplied by the local reflection coefficient  , then translated backwards 

from time 
2t  to time 

1t , when it is reflected again, multiplied by   and translated forwards from time 
1t  to time 

t . So, the second term in (42) represents the contribution to the forward-going disturbance from all possible 

double reflections.  The following terms in (42) consider third reflections and so on. Knowing this, we have  

 

11 12

21 22

( ) ( )
( )

( ) ( )

V t V t
V t

V t V t

 
  
 

,                                                 (43) 

with 

         11( ) 0.5[ ( ) ( ) ( ) ( )]FF BB FB BFV t V t V t V t V t    ,    12 ( ) 0.5[ ( ) ( ) ( ) ( )]BB FF FB BFV t V t V t V t V t    , 

21( ) 0.5[ ( ) ( ) ( ) ( )]BB FF BF FBV t V t V t V t V t    ,    22 ( ) 0.5[ ( ) ( ) ( ) ( )]FF BB FB BFV t V t V t V t V t     .                 (44) 

Taking account of the initial data (37) we have 

1/ 2

1/ 2

( , ) 0.5 ( )[ ( ) ( ) ( ) ( )] ( )

0.5 ( )[ ( ) ( ) ( ) ( )] ( ),

t BB FF BF FB

BB FF BF FB

y u t c u V t V t V t V t c u

c u V t V t V t V t c u





     

    
                      (45) 
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and 

1/ 2

1

0

1

0

( , ) ( ) 0.5 ( ) [ ( ) ( ) ( ) ( )] ( ) ( )

0.5 ( ) [ ( ) ( ) ( ) ( )] ( )d .

t

BB FF BF FB

t

BB FF BF FB

y u t u c u V t V t V t V t c u u dt

c u V t V t V t V t u t

        

    





             (46) 

When ( ) 0c u  , we have 

1 1 1 1 1 1

0 0

1 1
( , ) ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )

2 2

t t

y u t u T t T t u dt T t T t u dt           .   (47) 

After integration by parts and a change of variable (47) yields to D’Alembert formula (40). 

 

 

5. CONCLUSION 

 

As conclusion, from (46) we see that the solution of 2 ( )tt xxy A x y  is expressed in term of the ( ) ( )c u A x , 

where 
0

d
( )

( )

x
z

x u x
A z

   , and ( ) ( ( ))xA x A y x verifying the solutions (5) and (6). These solutions are 

expressed in term of cnoidal (or soliton) solutions. Therefore, we can emphasis that the collisions between the 

Seymour and Varley waves have cnoidal or soliton characteristics. These waves distort as they propagate, and 

are of arbitrary shape and amplitude. Since such media transmit waves that do not remember the interaction 

process they are called DRIP media. 
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