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Abstract: The sound attenuation in a sonic composite with point defects is studied using a new method that combines the
features of the cnoidal method and the genetic algorithm. Acoustic scatterers are composed by piezoceramic hollow spheres
of functionally graded materials - the Reddy and cosine graded hollow spheres. This method enables to obtain the dispersion
relation for defect modes, and the prediction of the evanescent nature of the modes inside the band-gaps.
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1.   INTRODUCTION

A sonic composite is a finite size periodic array composed of scatterers embedded in a homogeneous material [1-
3]. A great number of applications based on the sonic composites are explained by the existence of the band-gaps
into the acoustic filters, acoustic barriers or wave guides [4-7]. The generation of large band-gaps is due to the
superposition of multiple reflected waves within the array according to the Bragg’s theory, and consequently, it
is connected with a large acoustic impedance ratio between the scatterers’ material and the matrix’ material,
respectively.
The band-gaps correspond to the Bragg reflections that occur at different frequencies inverse proportional to the
central distance between two scaterers. The waves are reflected completely from this periodic array in the
frequency range where all partial band-gaps for the different periodical directions overlap. This makes sharp
bends of the wave-guide in the sonic composite. The evanescent waves characterized by complex wave numbers,
are distributed across the boundary of the waveguide into the surrounding composite by several times the lattice
constant [8].
Recent experimental and theoretical results [9-11] show that the presence of defects in sonic composite is related
to the generation of localized modes in the vicinity of the point defect with a significant evanescent behavior of
the waves outside the defect point. This means that the evanescent modes are related to the existence of the
band-gaps where no real wave number exists. The authors have revealed that the level of the sound is higher
inside the vicinity of the defect point than into the composite. Recent works show the calculation of complex
band structures for photonic crystals [12-14], using the explicit matrix formulation and the approximation of the
supercells. This technique enables to be extended to the 2D complete sonic composites, as well as in sonic
composites with point defects.
The goal of this paper is to propose an alternative method for obtaining the band structures of the 3D sonic
composites without/ with point defects. The point defects are vacancies or foreign interstitial atoms which are
supported by the interfaces between the hollow spheres and the matrix. The proposed method is used to simulate
a sonic plate composed of an array of acoustic scatterers which are piezoceramic hollow spheres embedded in an
epoxy matrix. The scatterers are made from functionally graded materials with radial polarization, which support
the Reddy and cosine laws [15-17]. Readers are also referred to [18-20] for vibrations of solid spheres of
functionally graded materials and for the wave propagation in functionally graded materials.
The proposed approach is based on the theory of piezoelectrics coupled with the cnoidal method and a genetic
algorithm. For a single sphere made from a functionally graded material, the free vibration problem was
analyzed in [21-25].
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2.  THEORY

The sonic composite is consisting of an array of acoustic scatterers embedded in an epoxy matrix. The acoustic
scatterers are hollow spheres made from a nonlinear isotropic piezoelectric ceramic, while the matrix is made
from a nonlinear isotropic epoxy resin (Figure 1). The sonic plate consists of 72 local resonators of diameter a .
A rectangular coordinate system 321 xxOx  is employed. The origin of the coordinate system 321 xxOx  is

located at the left end, in the middle plane of the sample, with the axis 1Ox  in-plane and normal to the layers

and the axis 3Ox  out-plane and normal to the plate. The length of the plate is l , its width is d , while the
diameter of the hollow sphere is a and its thickness is e a . In order to avoid unphysical reflections from the
boundaries of the specimen, we have implemented the absorbing boundary conditions in the 1x -direction, at

1 0x   and 1x l . A transducer and a receiver are located at 1x b  and 1x l b  , respectively. The role of
the transducer is to inject into the plate the plane monochromatic waves propagating in the 1x -direction.

Figure 1: Sketch of the sonic composite.

The governing equations are given by [2, 3]
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. It should be noted that equation (1) 1 is related to two state variables,

namely 1[ , ]TA F  ,while equations (1) 2  are related to six state variables 2, , , , ,rr rG w   
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where ij  is the stress tensor,   is the electric potential, iD  is the electric displacement vector, ijC are the
elastic constants, 66 11 12( ) / 2C C C  , ijf  are the piezoelectric constants ijf , ij  are the dielectric constants, and
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, ,i r   .  The elastic, piezoelectric and dielectric constants are arbitrary functions of the radial coordinate r .
On denoting the components of the strain tensor and displacement vector by ij and iu , , ,i r   , respectively.
The nonzero components of the matrix P  are given by

11 2 1P   , 2
12P   , 2

13 1P k  ,
2

2
14 1 22P k r

t


   


,

15 25 642 2P P P     , 21P   , 22 2P   ,
2

2 2
23 2 66 22P k C r

t


    


,

24 1P k  , 1
32 44P C  , 33 34 55 1P P P    , 1

36 44 15P C f , 1
41 33P    , 2

43P   ,

44 2P    , 1
45 33P f  , 2 2

52 44 15P C f  , 2
56 3P k  , 1

61 33P f  , 2
63P   , 1

65 33P C  ,      (3)
where

2
33 33 33C f    , 1

13 33 31 33( )C f f     , 1
13 33 33 31( )C f C f    ,

1 13 31 11 122( ) ( )k C f C C     , 2 1 660.5k k C  , 2 1
3 11 15 44k f C    .

Consider now two piezoceramic hollow spheres with the ratio of the inner and outer radii 0 . Two laws
represent the functionally graded property of the material. The first one is the Reddy law given by [15-17]

(1 )p zM M M     ,                                                              (4)
where   is the gradient index [22], pM and zM are material constants of two materials, namely PZT-4 and ZnO.
The case 0   corresponds to a homogeneous PZT-4 hollow sphere and   , to a homogeneous ZnO
hollow sphere. The second law is expressed as

cos (1 cos )p zM M M     .                                                         (5)
At the interfaces between the hollow spheres and the matrix, sharp periodic boundary conditions for the
displacement and traction vectors are added 29  for sonic composites without/with defects. In addition, in the case
of the point defects situated in the interfaces between the hollow spheres and the matrix, a new equation must be
added to reflect the dynamic of the concentration of the defects.
The distribution of the defects of the concentration ( )c r is characterized by the diffusive contribution D c  ,
where D  is the diffusion coefficient, and the forced contribution cF  where   is the mobility and F  the
driving force which acts upon the defects. The mobility and the diffusivity are related through the Nernst-
Einstein relation kD T  where k is the Boltzmann’s constant and T  the absolute temperature.
The rate of the change of the concentration in the presence of the source ( , )S r t is [26]
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The source ( , )S r t  represents the rate at which the defects are created at any point.

3.  THE BEHAVIOR OF THE SONIC COMPOSITE WITH DEFECTS

Consider a plate with the length 18cml   and width 11cmd  , while the diameter of the hollow sphere and its
thickness are 10.5mma  and 12mme  , respectively, and 0 0.3  . The numerical results are carried out for the
following constants [2]:
for PZT-4 10 2

11 13.9 10 N/mC   , 10 2
12 7.8 10 N/mC   , 10 2

13 7.4 10 N/mC   ,
10 2

33 11.5 10 N/mC   , 10 2
44 2.56 10 N/mC   , 2

15 12.7C/mf  , 2
31 5.2C/mf   ,

2
33 15.1C/mf  , 11

11 650 10 F/m   , 11
33 560 10 F/m   , 37500kg/m  ,

for ZnO 10 2
11 20.97 10 N/mC   , 10 2

12 12.11 10 N/mC   , 10 2
13 10.51 10 N/mC   ,

10 2
33 21.09 10 N/mC   , 10 2

44 4.25 10 N/mC   , 2
15 0.59C/mf   , 2

31 0.61C/mf   ,
2

33 1.14C/mf  , 11
11 7.38 10 F/m   , 11

33 7.83 10 F/m   , 35676kg/m  ,
and for epoxy-resin e  42.31 9 210 N/m , e  3.76 9 210 N/m , eA  2.8 9 210 N/m , eB   9.7 9 210 N/m ,

eC   5.7 9 210 N/m , and e  1170 3kg/m .



174

Figure 2: Variation of the concentration with respect to the radius of   which encloses the point defect.

The independent sets of equations (1) yield two independent classes of free vibrations. The first class does not
involve the piezoelectric or dielectric parameters, being identical to the one for the corresponding spherically
isotropic elastic sphere. The second class depends on the piezoelectric or dielectric parameters. With the increase
of the gradient index  , the natural frequencies increase for all modes and functionally graded laws, the
variation being more significant when 10  . For    the variation of natural frequencies is not significant
with respect to those of 10  . It is seen that for a piezoceramic hollow sphere, the piezoelectric effect consists
of increasing the values for the natural frequencies in both classes of vibrations. If 2 /r a   increases, the
natural frequencies increase for the first class of vibrations and decrease for the second class.
The propagation of sound is characterized by the superposition of multiply reflected waves. Featuring of the
length scale a , the structure of the full band-gap can be better understood by representing the linear band
structure (dispersion curve).
The simulation is carried out for a variation of the defects concentration represented in Figure 2 with respect to
the radius of   which encloses the point defect (vacancies or foreign interstitial atoms), for 300K. In this figure
only the effect of diffusion is shown, without any stress gradient, after 1000sec.
Figure 3 plots the dispersion curve including the first partial band-gaps for the composite without defects and for
the composite with defects ( c  1.5 21 310 cm ). The reduced units for the frequency are 0/ 2a c  , with 0c the
speed of sound in air. We see that the point defects confine acoustic waves in localized modes and in
consequence the band-gaps are larger than in the case of the complete composite.
The guided waves are accompanied by evanescent waves which extend to the periodic array of the scatterers
surrounding the wave-guide. Using the Joannopoulus representation [8] for the bad-gap structure, Figure 4
presents the band structure with the evanescent modes with exponential decay for the sonic composite without
defects. The modes present purely imaginary wave vectors. The central grey region is the full band-gap ranged
between 8.02 kHz and 8.72 kHz, given by the real part of the wave vector constrained in the first Brillouin zone
for each frequency. The left region represents the imaginary part of the wave vector for longitudinal direction
frequency (tension/compression), while the right region is the imaginary part of the wave vector for transverse
direction frequency (shear). The red lines represent the imaginary part of the wave vector of the evanescent
modes inside the bad-gap.
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Figure 3:  Linear dispersion for sonic composite without/with defects.

If we want to have a full band-gap, we must have structures with band-gaps for both longitudinal and transverse
waves in the same frequency region.
The difference in the sound velocities between transverse and longitudinal modes causes partial gaps at different
frequencies. If the mechanical contrast is small, these partial gaps are narrow and do not overlap. As mechanical
contrast increases, the partial gaps widen and begin to overlap in the same frequency region leading to the
appearance of a full band-gap independent of the polarization.

Figure 4: Band structure for the sonic composite without defects in the case of Reddy law.
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.
Figure 5 : The input and coupled waves for sonic composite without defects in the case of Reddy law.

Figure 6: Band structure for the sonic composite with defects ( c  1.5 21 310 cm ) in the case of Reddy law.

It is strongly expected that mode coupling waves arise between adjacent wave-guides. The output of the coupled
modes is compared with the input waves, as shown in Figure 5 in the case of Reddy law and 22.2kPasme

  .
Figure 6 presents the band structure for the sonic composite with defects ( c  1.5 21 310 cm ) in the case of the
Reddy law. We observe that this time the portion widens from 7.95 kHz to 8.76 kHz. The coupled and the input
waves are shown in Figure 7 for 22.2kPasme

  . The difference from the composite without defects consists
only in the size and structure of the full band-gaps.

Figure 7 : The input and coupled waves for sonic composite with defects ( c  1.5 21 310 cm ) in the case of
Reddy law.
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Figure 8: Band structure for the sonic composite with defects ( c  1.5 21 310 cm ) in the case of the cosine law.

Figure 8 presents the band structure for the sonic composite with defects ( c  1.5 21 310 cm ) in the case of the
cosine law. We observe that the full band-gap has the same length but has undergone a translation, i.e. to 7.67
kHz and 8.48 kHz.
The length of the full band-gap as function of the concentration of the point defects is represented in Figure 9,
for both Reddy law and cosine law, respectively. For Reddy law, the length increases with concentration and
shows a flat portion starting to the concentration of 1.5 with a slight decrease of concentration at around 0.88
kHz. For the cosine law, the length shows two flat zones and a visible drop of concentration around 0.64 kHz.

Figure 9: The length of the full band-gap as function of the concentration of the point defects.

6. Conclusions

Analytical and numerical solutions and verification to real results are presented in this paper for propagation of
waves in sonic composites without/with defects. The point defects are vacancies or foreign interstitial atoms
which are situated in the interfaces between the hollow spheres and the matrix. It is shown that the point defects
confine acoustic waves in localized modes, and the defect modes are created within the band-gaps of the
composite. The localization of the sound in the defect regions leads to increase in the intensity of the acoustic
wave’s interactions. Such localizations increase the length of the full band-gap frequency for sonic composites
with defects by 15-20% compared with the values for similar composites without defects.
The scattering problem inside the sonic composite is solved by a method which combines the cnoidal method
with a genetic algorithm. The reason for choosing the cnoidal method lies in the facts that the governing
equations are reduced to Weierstrass equations with polynomials of higher-order, for a change of variable
t x ct  , with c  a constant.  The solutions are expressed as a sum of the linear and the nonlinear superposition
of cnoidal vibrations, respectively
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