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Abstract: In this paper a potential technical application is mentioned, i.e. a non-circular gears 

train whose pinion pitch curve belongs to the Gielis complex shapes family. In order to insert a 

Gielis’ supershape in the gear theory, the influence of its defining parameters is examined by 

taking into account i) the conjugated pitch curves geometry and induced gear ratio variation and 

ii) the pressure angle variation, as an indicator of the motion transmission. Since there are eight 

parameters involved - the Gielis transformation parameters and the specific gears parameters, 

highly enlarging the study’s hypotheses, the analysis is restricted to bi-lobes gears, with close 

pitch curves. The analysis results could inspire the non-circular gears designers who are looking 

for a certain variable gears kinematics.       
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1. INTRODUCTION 

Since it was introduced as a mathematical instrument that would describe 

various botanical shapes [1], the Gielis’ transformation/superformula has been 
widely spread and implemented in mathematics, science and technology. 

Varying the transformation parameters, lots of researchers have found a 
spectacular challenge in identifying and designing simple or complex, symmetric 

or asymmetric, pinched or bloated forms to be applied in many areas. In terms 
of technological benefits of Gielis’ supershape, mechanics, mechatronics, 

computer graphics and modeling are just some of the fields that have been used 

the new geometrical approach [2]. 

Non-circular gears are those mechanisms parts that exhibit special shapes in 

order to fulfill specific tasks, such as variable speed or specific law of motion for 
the driven element. One of the non-circular gears design hypotheses [3] refers 

to the predefined pinion pitch curve geometry and gears center distance, 
requiring determination of the conjugate pitch curve and transmission ratio 

variation; based on this hypothesis, several records are found in literature on 
modeling and analyzing non-circular gears. Tong and Yang presented a 
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generalized method to design pairs of identical conjugate two-lobe and N-lobe 
pitch curves, describing the geometry of the driving pitch curve by a 

monotonically increasing function, with at least C1 continuity, and two 
parameters, the minimum and maximum values for the curve radius, 

respectively [4]. Tsay and Fong introduced Fourier series for the non-circular 
pitch curve approximation, in order to improve the design flexibility [5]. Yang et 

al. presented a reshaping algorithm for the design of noncircular internal pitch 
curves whose outer pitch curve is initially described by desirable monotonic 

sinusoidal and polynomial functions, further modified to assure correspondence 
between the curves’ kinematics and the number of pitch lobes [6]. Litvin 

developed a detailed analysis of the non-circular gears design procedure and 

considered conventional and modified elliptical centrodes, oval centrodes and 
centrodes with lobes, as examples [7]. Andrei and Vasie introduced the Gielis’ 

supershape as the driving non-circular pitch curve in the general algorithm of 

the non-circular gear generation [8]. 

The pressure angle is an important parameter in gears theory, influencing the 

power transmission capacity and the force transmission conditions, the meshing 
gears vibrations and noise etc. In case of non-circular gears, the pressure angle 

varies due to the variable normal direction to the tooth flanks. Litvin analytically 
expressed the non-circular gears pressure angle and illustrated the change of 

pressure angle magnitude in some particular types of gears, correlated with 
geometrical parameters of the specific pitch curves and a predefined tool profile 

angle [7]. Danieli and Mundo proposed a new methodology of non-circular gears 
generation, in order to increase the gears contact ratio, considering a constant 

pressure angle for any given tooth, but variable from one to the next [9]. 

In this paper, the Gielis complex supershape family is chosen as a geometrical 
support for the non-circular gears pitch curve generation and an analytical study 

is developed, focused on the transformation parameters limitations that would 
enable the generation of a convenient gear shape. Due to numerous parameters 

involved in the Gielis superformula and the „infinite” combination possibilities, 
the authors narrowed down the investigations, focusing the analysis on closed 

convex curves with two lobes. For these geometries, the variations of both the 
gear ratio and the pressure angle, with consequences on the transmission 

kinematics and quality, are chosen to filter the non-circular gear pitch curve. 
The analytical algorithm and graphs are developed based on Java programming 

original codes and Excel software. 

2. INFLUENCE OF THE SUPERSHAPE’S PARAMETERS ON CENTRODES   

GEOMETRY AND TRANSMISSION RATIO 

One of the requirements for the non-circular gears design includes the definition 

of one gear pitch curve geometry and the gears center distance. The present 
study has chosen the Gielis’ superformula [1] for the driving centrode polar 

definition: 
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where r1*, 1 are the polar coordinates; a, b – the supershape semi-axes 

lengths, n0 – a real parameter that induces rotational symmetry; n1, n2, n3 – 

real parameters that define the curve shape, n1  0.  

In this paper, a limited analysis is proposed, wherein the parameters involved 
in the above transformation are chosen as follows: i) a = 1, b = 2, specific to 

elliptical shapes, as base geometry; ii) n0 = 2, generating closed centrodes, with 

two lobes; iii) n2 = n3, leading to symmetrical centrodes. 

Considering the above specified values and relationship between the defining 

parameters, the Gielis’ transformation will define a potential driving centrode 

from a mating centrodes pair, as follows: 
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The driven centrode geometry will be expressed by [7]: 

𝑟2
∗(𝜑2(𝜑1)) = 𝐴 − 𝑟1

∗(𝜑1) ; 𝜑2(𝜑1) = ∫
1
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where r2*, 2 are the polar coordinates of the driven centrode; A – the gears 

center distance; i12 – the gear ratio.  

It is also assumed that both centrodes perform one single rotation during the 
rotational motion period; the unknown center distance A will be determined 

through an iterative algorithm, from equation: 
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In Figures 1, 2, the influence of the Gielis’ transformation parameters on the 

conjugated centrodes geometry (Fig. 1a, 2a) and on the gear ratio (Fig. 1b, 2b) 
are illustrated. For a better view of values i12 <1, the gear ratio is represented 

on logarithmic scale. 

As shown in Figure 1, for the considered case of n2 = n3 = 3, at values n1 < 1, 
the driving centrode exhibits slightly concave zones and the rotational center is 

moved close to the centrode curve, while sharp curves are identified for the 
driven centrode. Extremely high gear ratio and large variation, with high rate of 

increasing/decreasing amplitude, are recorded. As n1 is increased, convex 
centrodes are generated, that change their geometrical appearance from 

elliptical to circular shapes. For n1 ≥ 10, almost circular shapes are generated 

for the gears centrodes and the gear ratio amplitude is reduced, getting a small 

oscillation around value 1, which corresponds to the circular centroids.  

While the increase of n1 parameter has a clear and intuitive influence on the 
centrodes geometries and kinematics, a different behavior is recorded when n2 

(n3) parameter is varied. As illustrated in Figure 2, in case of n1 = 3, the mating 

curves exhibit pairs of turning points while n2 < 2, not being suitable as gears 
centrodes; convex curves are generated while 2  n2  6; as the parameter is 

further increased, concave geometries appear on the driven centrode and the 
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displacement of the driving centrode rotational center towards the curve 
extremity takes place (see n2 = 10), which is an undesirable effect. Variation of 

the gear ratio increases with increase of n2 parameter. Turning points appear in 
gear ratio representation, due to either sharp geometries or unproper position 

of the centrode rotational center.  

  

 

n1=0.5 n1=3 

  
n1=1 n1=5 

  

n1=2 n1=10 
(a) (b) 

Figure 1: Influence of n1 parameter on conjugated centrodes geometry (a) and on gear ratio 

(b) for n2 = n3 = 3  
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n2=n3=2 n2=n3=10 

(a) (b) 

Figure 2: Influence of n2 parameter on conjugated centrodes geometry (a) and on gear ratio 

(b) for n1 = 3 

3. INFLUENCE OF THE SUPERSHAPE’S PARAMETERS ON PRESSURE 

ANGLE 

In case of non-circular gears, the variation of the pressure angle directly 

influences the transmission quality through the modifications in both gear teeth 
flanks geometry and force transmission direction. Considering the Gielis’ 

complex family shapes, the limitation of the pressure angle variation range could 
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be achieved by proper choices of the conjugated pitch curves and tool profile 
angle; as shown in literature [7], the noncircular gears pressure angle (Fig. 3) 

is expressed by: 

𝛼12 = 𝜇1(𝜑1) ± 𝛼 −
𝜋

2
= tan−1

𝑟1(𝜑1)

𝑟1
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± 𝛼 −
𝜋

2
 (6) 

where µ1(1) is the angle between the tangent (t) and the extended vector 

specific to the pinion tooth active flank current point;  – the tool profile angle; 

the sign ± corresponds to the right and left side of the tooth flank, respectively. 

 
Figure 3: Pressure angle in non-circular gears 

 
a) 

 
b) 

Figure 4: Influence of parameters on gear pressure angle, for n2=n3=3 

 
a) 

 
b) 

Figure 5: Influence of parameters on gear pressure angle, for n1=3 
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In Figure 4, the influence of Gielis’ transformation parameters on the pressure 
angle is illustrated for the previously analyzed centrodes geometries, considering 

the tool profile at standard value 20. As seen in Figure 4, when increasing n1 

values, the pressure angle variation is reduced; this would be expected due to 

the centrode geometry tendency towards circular shapes. Undesirable pressure 
angle variation is reached for n1 = 0,5, especially due to the position of the 

centrode’s rotational center (Fig. 2a), with influence on the vibrations and 
motion transmission quality. Values of n2 (n3) parameter, in the vicinity of 2, 

assure a uniform variation of the pressure angle, in convenient range; further 
increasing values induce non-uniform variation and large amplitude of pressure 

angle variation (Fig. 5).  

4. CONCLUSIONS 

The Gielis’ transformation exponents influence on the mating gears centrodes 
geometries, transmission ratio and pressure angle are investigated in case of bi-

lobes centrodes, with different axes lengths. It was found out that, for suitable 
geometries and kinematics of the gears centrodes, the values for the exponents 

n1, n2, n3 should be chosen greater than 2; still, high values for the exponents 
of the Gielis’ transformation trigonometric terms (n2, n3), in comparison to the 

main exponent n1, lead to improper positions of the centrodes rotational centers, 
introduce concave profiles on gears centrodes and increase the amplitude of the 

pressure angle variation. The present limited study is just a part of a large data 

base that could be generated and could inspire a gear designer to use Gielis’ 
supershape in order to get a specific non-circular gear ratio variation, controlling 

the gear pitch curves geometries and transmission smoothness. 
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