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Abstract: - This paper deals with the simultaneous frictionless three-point collision of a rigid solid. 

The working hypotheses and the conditions under which the problem can be solved are presented. 

The impulses at the contact points, the velocity of the rigid body after the collision and its energy 

variation are determined. Some special cases are also discussed. The theory is illustrated based on a 

fully solved example. The paper concludes with conclusions and future directions for study. 
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1. INTRODUCTION 

The actual study of the problem is presented in our previous paper [26], based on 

the references [1 – 25]. Some aspects must be remembered here [26]: 

– simultaneous vanishing of the normal velocities in the contact points; 

– there is no jamb phenomenon. 

In the previous paper we have discussed some aspects concerning the 

simultaneous collisions. In this paper we consider two rigid bodies with constraints 

which simultaneously collide at three points. 

 

2. TECHNICAL REQUIREMENTS 

We will use the same notations as in [26]. 

In a similar way to the simultaneous collisions at two points of a rigid solid with 

bilateral contraints, one may write 
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for the first rigid solid, and  
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for the second one. 

The previous expressions are multiplied at the left side by    ηU
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The velocities after the collision are 
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The impulses of constraints are 
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The matrices of the simple impulses are   ii ξS , with 2 ,1=i . 

Example 1. For the frames in Fig. 1, jointed at the points 1O  and 2O , have the 

centers of weight in 1C  and 2C  and collide at the points 1A , 2A  and 3A , one knows the 

dimension a , the masses 1m  and 2m , the inertial moments 
1x

J , 
1y

J , 
1z

J , and 
2xJ , 

2yJ , 

2zJ ,respecively, relative to each frame with respect to the central inertial systems, the 

coefficients of restitution 1k  at the point 1A . 2k  at the point 2A , and 3k  at the point 3A , 

and the initial distributions of velocities (the magnitudes of the angular veocities 10  

and 20 ). 

 

Figure 1. Example 1 
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One considers that the frames are identical: 21 mm = , xxx JJJ ==
21

, yyy JJJ ==
21

, 

zzz JJJ ==
21

, 02010 == , 

One asks for the impulses at the collision points 1A , 2A , and 3A , the constraint 

impulses at the points 1O  and 2O , and the distributions of velocities after the collision. 

We get: 

kiOC 111 a= , 0jOC 111 = , ikOC 11 a−= , 
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It results 
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and 

 ( ) 0det 1 =G ,  ( ) 0det 2 =G ,    ( ) 0det 21 =+ GG , 

that is, the matrix    21 GG +  is not an invertible one and, consequently, the rest of the 

parameters can not be determined. In fact, the problem can not be solved if the three 

impulses are coplanar, conqurent or paralel (our case) 
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The problem can be solved if we change the direction of impulse 3P  as we present 

in Fig. 3.2. 

 

Figure 2. Example 2 

 

3. CONCLUSIONS 

In this paper we discuss the simultaneous multi-points collision of two rigid bodies 

with constraints. The collision takes place at three different points. The conditions for 

the solving of problem are also described and they took into account the positions of 

the three impulses. Based on it, the first example given in the paper can not be solved 

because it leads to a non-invertible matrix. The second example which avoids this 

inconvenient can be completely solved. 

The method can be easily generalize to a simultaneous collision of two constrained 

rigid bodies at an arbitrary number of points. 
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