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Abstract: Numerous studies concerning the acoustical behavior of violins refer to the similarities and differences in the tonal 

qualities produced by old and new instruments, depending on various factors. Among these factors the acoustical 

characteristics of wood species are criteria for the selection of the most appropriated raw material for violin making. The 

main wood species used in violin construction are spruce (Picea abies) and maple (Acer pseudoplatanus). In this paper, the 

violin plates were modeled with finite elements analysis based on three hypotheses – the material is isotropic; the material is 

transverse isotropic; the material is orthotropic, was used for modal analysis of violin plates. The plates were considered flat 

and having uniform thickness of 3 mm. The patterns of vibration modes are affected by wood species and structure. Spruce 

plate shows nodal lines aligned to L anisotropic direction of wood, corresponding with the direction of the fibres. Maple 

plates show nodal lines aligned to R anisotropic direction of wood and to the direction of medullary rays in the LR plane. 
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1. INTRODUCTION  
 

It is generally accepted that spruce is used for the top plate of the violin and curly maple for the back of the 

violin plate [1 – 4].  Spruce (Picea abies) for the top plate, called also spruce resonance wood or tone wood, and 

curly maple (Acer platanooides) of typical anatomical structure, for the back plate, have been traditionally used 

for violins since the Baroque era. Acoustical and mechanical parameters of these species have been widely 

presented in reference books [2, 3] and articles [5 – 8]. Violin plates should be quarter sawn, in the LR 

anisotropic plane of wood. However, some famous violins made for example by Guarneri, have the back plate in 

curly maple, flat sawn - in the LT anisotropic plane of wood [9 – 10].  [11 – 12] investigated the vibration modes 

of freely supported and edge-constrained top and back plates according to shape, arching, thickness graduation, 

the effect of coupling to the ribs, etc. The most recent state of the art reference on violin acoustics was published 

in 2014 by [13].  In these articles no reference is made to the amount of the violin plate’s vibration surface.  The 

aim of this article is to use FEA to study the effect of wood species on vibration modes of violin plates. 

Furthermore, FEA supports a simplified model for the computation of vibrating areas of plates.  

 

 

2. MATHEMATICAL FORMULATION 

 

The elastic properties of solids can be defined by generalized Hook’s law relating the volume average of stress 

 to volume average of strains  by the elastic constants  in the form [9, 10, 14]: 

                                                                                                                                       (1) 

Or 

                                                                                                                       (2) 

Where  is tensor of elastic stiffness;  – tensor of elastic compliances and i, j, k or l correspond to 

1, 2, 3 or 4 directions.  For solids of different symmetries such as isotropic, transverse isotropic or orthotropic, 

the stiffness matrix can be turned into a compliance matrix. 

The simplest elastic symmetry is that of an isotropic solid with only two independent constants,  and  which 

are known as Lamé coefficients.  
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                                                                                                                                                            (3) 

                                                                                                                                                   (4) 

                                                                                                                                     (5) 

Where E is Young’s modulus,  is the shear modulus,  – the Poisson’s ratio and K is the bulk modulus. 

For isotropic solid, the terms of stiffness matrix are: 

                                                                                                                            (6) 

                                                                                                                                       (7) 

                                                                                                                                       (8) 

The anisotropy depends on the internal structure of material and perceived as the variation in material response 

with direction of the applied stress. The complex elastic symmetry of an orthotropic solid lies when constants are 

influenced by three mutually perpendicular planes of elastic symmetry. The corresponding stiffness matrix 

contains nine independent constants: six diagonal terms ( , , , , , ) and three off diagonal 

terms ( ). For transverse isotropy, the material may possess an axis of symmetry. In this case, the 

corresponding stiffness matrix contains five independent constants: three diagonal terms ( , ,  ) and 

two off diagonal terms ( ). It can be shown that the transverse isotropy is a particular case of an 

orthotropic solid. For monoclinic material, 21 independent terms, and : 

                                                                                                             (9) 

Orthotropic material: three symmetry axes, three symmetry planes and nine independent terms of the stiffness 

matrix: 

                                                                                                           (10) 

Transverse isotropic material: 

                                                                        (11) 

Isotropic material: two independent constants: 

                                           (12) 

In conclusions, the number of constants for various types of anisotropic materials is 21 for monoclinic materials, 

13 for triclinic materials, 9 for orthotropic materials, 5 for hexagonal or transversely isotropic materials and 2 for 

isotropic materials.  

The terms of the compliance matrix are given by relation: 
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                                                                                                            (13) 

Where:   are relate an extensional stress to an extensional strain, both in the same direction. For 

solid wood, this relation gives the Young’s moduli . (L – longitudinal direction along fibres, R radial 

direction, T -  tangential direction) (Figure 1);   – relate an extensional strain to a perpendicular 

extensional stress. In this way, the six Poisson’s ratios can be calculated;  – relate a shear strain to 

a shear stress in the same plane and are the inverse of the terms , corresponding to planes 23, 13 

and  12.  The relationship between the stiffness terms and the compliance terms for orthotropic solid are: 

                                                                                                                            (14a) 

                                                                                                                           (14b) 

                                                                                                                           (14c) 

                                                                                                                         (14d) 

                                                                                                                         (14e) 

                                                                                                                          (14f) 

                                                                                                                                             (14g) 

                                                                                                                                             (14h) 

                                                                                                                                             (14i) 

Where: 

          (15) 

In case of wood, when the axes are labelled L, R and T for wood species, engineering constants are related to the 

compliances in the following form: 

 

                                                                        (16) 

 

In case of wood, the stress and strain states of wood pieces are represented by stresses tensor and strains tensor, 

respectively [9, 15, 16]: 

;                                                               (17) 

where  are normal stresses on longitudinal (L), radial (R) and tangential (T) direction; 

 – tangential stresses in planes LR, RT și LT; ,  și  – strains; and  – 

shearing strain. Using the tensor of elasticity modulus E and the tensor of Poisson coefficients, results: 
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                                                (18)                                             

where , , ... are coefficients of transverse contraction (first index reprezents the direction of transverse 

contraction and the second, the direction of the stress which produces the elongation). From energetic reason, 

between the coefficients of transverse contraction  and elasticity modulus, the relations (3) are: 

                                         (19) 

Substituting these parameters, we get the equations of stresses : 

                (20) 

In accordance with theory of elasticity presented above, three hypotheses – the material is isotropic; the material 

is transverse isotropic; the material is orthotropic where used to study the effect of wood anisotropy on violin 

plates made of spruce and maple, using finite elements analysis.  

 

 
Figure 1. The main planes and axis of elastic symmetry of wood 

 

 

3. MATERIALS AND METHODS 

 

In accordance with theory of elasticity presented above, three hypotheses – the material is isotropic; the material 

is transverse isotropic; the material is orthotropic where used to study the effect of wood anisotropy on violin 

plates made of spruce and maple, using finite elements analysis. Wood mechanical characteristics and typical 

plate masses chosen to simulate the modes of vibration of plates are given in Table 1. The plates have no f – 

holes and are flat with a constant thickness of 3 mm. The finite element analysis of violin plates was performed 

by using ABAQUS software. The violin plate was meshed with a quadratic shell element (9495 finite elements), 

with eight nodes located in corners (total 28664 nodes). Such an element is based on the theory of small and 

medium thick plates and can be used in the analysis of large deformations. The plates were edge – constrained as 

shown in Figure 1a and meshed violin plate (Figure 2b). 
a) b)

 
Figure 2. Violin plate edge – constrained, in pre-processing step. Legend: a) boundary condition; b) meshed 

structure. 
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Table 1. Mechanical characteristics of wood (data from *[19] and ** [20]) Note: * In the hypothesis of 

transverse isotropic solids, we have ER = ET; GLR = GLT, and three Poisson ratios. 

Elastic 

parameters  

 

Units 

First hypothesis 

Isotropic solid 

Second hypothesis* 

Transverse isotropic * 

Third hypothesis**  

Orthotropic  

Spruce Maple Spruce Maple Spruce Maple 

Density  kg/m3 400 600 400 700 430 590 

Young’s moduli MPa 15 000 10 000     

EL MPa   13000 10 000 13500 10 000 

ER MPa   700 2 000 890 1 570 

ET MPa   700* 2 000* 480 870 

Shear moduli MPa 840 700     

G RT MPa   60 720 32 290 

G LT MPa   900 1600 500 1100 

G LR MPa   900* 1600* 720 1222 

Poisson ratios   0.37 0.37     

ν LR     0.37 0.47 0.45 0.46 

ν RL      0.03 0.093 

ν LT    0.42 0.50 0.54 0.50 

ν TL      0.019 0.038 

ν RT    0.47 0.50 0.56 0.82 

ν TR      0.30 0.40 

 

3. RESULTS AND DISCUSSIONS 

 

The effect of wood anisotropy on vibration modes of violin plates made of spruce and maple, studied with FEA 

refers to the vibration of violin plates in three characteristic situations, namely the material has isotropic 

symmetry and has three elastic constants, the material has transverse isotropic symmetry and has five elastic 

constants and the material has orthotropic symmetry and has nine elastic constants. 

As regards the orthotropic anisotropy the following ratios should be taken into consideration: ratio of Young’s 

moduli EL /ER; EL/ET, ratio of shear moduli GLR / GRT; GLT / GRT and Poisson ratios [13]. As we shall see 

further, the displacement of these surfaces is illustrated for various frequencies, for spruce and maple. The 

displacement is indicated by the colour scale, ranging from blue – displacement zero, to red, maximum 

displacement, 1 mm. Table 2 and Table 3 show for spruce and maple, typical frequencies and mode shapes of 

several modes simulated for edge – pinned violin plates of uniform thickness of 3 mm, flat plates, without f - 

holes, modelled using three hypotheses for the material’s anisotropy. 

 The eigenmodes are indicated by the color scale. As regards the vibration of spruce violin plate illustrated in 

Table 2, we note that wood anisotropy has no effect on the vibrations patterns for modes 1 to 6. In this table only 

mode 6 is illustrated. For mode 6 and isotropic, transverse isotropic and orthotropic anisotropies the frequencies 

are respectively 202.42 Hz, 205.95 Hz and 219.55 Hz.  The vibrating surface of high amplitude (yellow and red) 

is very small.  

 

Table 2. Spruce plates, fixed edge - vibration patterns in three hypotheses of elastic symmetry. 

Mode Isotropic symmetry Transverse isotropic Orthotropic symmetry 

Lower modes 

6 Mode 6, f=202.42 Hz Mode 6, f=205.95 Hz Mode 6, f=219.55 Hz 

Mode: 

Identical 

Frequency: 

very near 

   

7 Mode 7, f=219.56 Hz Mode 7, f=229.82 Hz Mode 7, f=247.59 Hz 

Mode: 

identical 

Frequency: 

very near 

   
8 Mode 8, f=224.71 Hz Mode 8, f=230.65 Hz Mode 8, f=248.18 Hz 
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Mode: 

identical 

Frequency: 

very near 

   

9 Mode 9, f=232.74 Hz Mode 9, f=239.71 Hz Mode 9, f=257.02 Hz 

Mode: 

Identical 

Frequency: 

very near 

   
10 Mode 10, f=256.79 Hz Mode 10, f=267.25 Hz Mode 10, f=285.93 Hz 

Mode: 

Identical 

Frequency: 

very near 
   

12 Mode 12, f=276.84 Hz Mode 12, f=288.70 Hz Mode 12, f=310.52 Hz 

Mode: 

Identical 

Frequency: 

Different 
   

 Superior modes  

49 – 66 Mode 66, f = 588.15Hz Mode 56, f = 591.70 Hz Mode 49, f = 595.16 Hz 

Mode: 

different 

Frequency: 

very near 

   
358 – 508 Mode 508, f = 1568.4 Hz Mode 423, f = 1568,2 Hz Mode 358, f = 1568.3 Hz 

Mode: 

different 

Frequency: 

Identical 

   
 

Table 3. Maple plates- vibration patterns in three hypotheses of elastic symmetry 

Mode Isotropic symmetry Transverse isotropic Orthotropic symmetry 

Lower modes 

4 Mode 4, f=135.66 Hz Mode 4, f=138.35 Hz Mode 4, f=173.38 Hz 

Mode 

identical 

Frequency 

Near 
   

6 Mode 6, f=164.63 Hz Mode 6, f=169.86 Hz Mode 6, f=216.50 Hz 

Mode 

identical 

Frequency 

Different 
   

7 Mode 7; f = 178.74Hz Mode 7; f = 189.26 Hz  Mode 7; f = 217.44 Hz  

Mode 

identical 

Frequency 

Different 
   

9 Mode 9; f=189.49 Hz Mode 9; f=197.58 Hz Mode 9; f=248.31 Hz 
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Mode 

identical 

Frequency 

Different 
   

10 Mode 10; f=208.99 Hz Mode 10; f=218.92 Hz Mode 10; f=257.72 Hz 

Mode 

identical 

Frequency 

Different 

   

11 Mode 11, f=210.48 Hz Mode 11, f=224.05 Hz Mode 11, f=274.93 Hz 

Mode 

identical 

Frequency 

Different 

   

12 Mode 12, f=225.42 Hz Mode 12, f=237.20 Hz Mode 12, f=286.02 Hz 

Mode 

identical 

Frequency 

Different 
   

 Superior modes 

48-58 Mode 55, f=438.65 Hz Mode 48, f=441.69 Hz Mode 58, f=593.89 Hz 

Mode 

different 

Frequency 

Different 

   

188 -335 Mode 335, f=1046.9 Hz Mode 288, f=1046.2 Hz Mode 188, f=1047.2 Hz 

Mode 

different 

Frequency 

Identical 
   

  

Mode 7, f=247.59 Hz, show identical patterns for isotropic and transverse isotropy and are different from 

orthotropic symmetry for which the upper bout, (in blue) is not vibrating.  Mode 8 – the patterns are different for 

the three cases. The orthotropic plate vibrates (red and yellow) mostly on the wider lower bout, at f = 248.18 Hz.  

Mode 9 – the patterns are different for the three elastic symmetries, but have some similarities - the central part 

of the lower bout vibrates mostly. Mode 10, f = 285.9 Hz, the center bout vibrates identically for the plates in the 

three cases of anisotropy. At superior modes, above 588 Hz, the patterns are different for each case of 

anisotropy. However, in the case of the orthotropic plate, mode 49, at f = 595.16 Hz the upper bout does not 

vibrate. At frequencies higher than 1500 Hz, the vibrating surfaces of small amplitude are distributed equally on 

the plate surface.  No large amplitudes (red color) were observed. For mode 4 and the isotropic, transverse 

isotropic and orthotropic anisotropies the frequencies are respectively 135.66 Hz, 138.35 Hz and 173.38 Hz. The 

vibrating surface (yellow and red) is in the lower bout. Mode 6 shows identical patterns for isotropic and 

transverse isotropy and is different from orthotropic symmetry for which the central bout vibrates mostly. Mode 

7 – the patterns are very similar for isotropic and transverse isotropic cases and different for the orthotropic case. 

If we compare the modal frequencies of vibration patterns of plates made of spruce and maple at modes ranging 

from 5 to 12, and for the three cases of anisotropy, one can note that for all anisotropy cases the modal frequency 

is higher for spruce plate than for maple plate. Furthermore, in the case of isotropy the difference between the 

modal frequency of spruce plate and maple plate is between about 13% and 28%.  In the case of transverse 

isotropy, the difference between the modal frequency of spruce and maple is between 17.52% and 18.08 % for 

modes 6, 10 and 12. In the case of orthotropic symmetry the differences are a maximum of 7.88 % for mode 12 

and 1.38 % for the first mode. Therefore, it can be noted that theoretically, for orthotropic plates, at the same 

mode, the modal frequencies of plates made of spruce and maple are very close. 
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3. CONCLUSION 

 

The paper presents the finite element analysis of violin plates made from spruce and maple, using three 

hypotheses in pre-processing step related to elastic properties of materials. With the variations of wood 

anisotropy and modal frequencies, the plate made of maple is more susceptible to vibration than the plate made 

of spruce. This finding seems to justify once more, the traditional combination of these two species for violin 

making. The frequency range of analysis was between 65 Hz and 2637 Hz. With the variations of wood 

anisotropy and modal frequencies, the plate made of maple is more susceptible to vibration than the plate made 

of spruce. This finding seems to justify once more, the traditional combination of these two species for violin 

making. 

 

 

ACKNOWLEDGMENTS 

 
This paper was supported by Program partnership in priority domains - PNIII under the aegis of Ministry of 

Research and Innovation and Executive Agency for Higher Education, Research, Development and Innovating 

Funding from Romania, project PN-III-P2-2.1-PED-2019-2148, no. 568PED/2020 MINOVIS.  

 

 

REFERENCES 

 

[1] Galamian I 1988 Grundlagen und Methoden des Violinspiels, Ed. Sven Erik Bergh; 

[2] Setragno F, Zanoni M, Sarti A, Antonacci F 2017 Feature-based Characterization of Violin Timbre. The 

25th European Signal Processing Conference (EUSIPCO), 1903-1907 

[3] Trapasso L 2013 Feature-based Analysis of the Violin Tone Quality. Master Degree Thesis Politecnico Di 

Milano. 

[4] Taia H C, Shena Y P, Lina J H, Chungb D T 2018 Acoustic evolution of old Italian violins from Amati to 

Stradivari.  

[5] Perez M , Marconi E 2018 Wooden Musical Instruments Different Forms of Knowledge Book of End of 

WoodMusICK COST Action FP1302 

[6] Nagyvary J, Guillemette R G , Spiegelman CH 2009 Mineral Preservatives in the Wood of Stradivari and 

Guarneri, PLoS ONE 4(1) pp 1 – 9 . 

[7] Harris, N., A qualitative analysis of the relationship between longitudinal string vibration, arching shape 

and violin sound, Arching Shape and Violin Tone,  

[8] Bissinger G 2004 Contemporary generalized normal modes of violin acoustics. Acta Acustica united with 

Acustica 90 pp 590 – 599. 

[9] Bissinger G 2008 Structural acoustics of good and bad violins. J Acoust. Soc. Am. 124 pp 1764 – 1773. 

[10] Bucur V 2016 Handbook of materials for string musical instruments. Springer, Chapter 3 - Mechanical 

characterization of materials for string instruments: 93 – 132 and Chapter 8 - Ageing of musical instruments – 

about the old and new instruments : 325 – 372.  

[11] Carlsson P, Tinnsten M 2003 A distributed computing system used for concurrent optimization methods on 

a violin top, Structural and Multidisciplinary Optimization 25 (5) pp 453 – 458.  

[12] Gough C 2015 Violin plate modes. J. Acoust. Soc. Am. 137(1) pp 139 – 153.  

[13] Woodhouse J (2014) The acoustics of the violin: a review. Reports on Progress in Physics, 77, 11, 

p.115901. http://iopscience.iop.org/article/10.1088/0034-4885/77/11/115901/pdf. 

[14] Timoshenko S, Goodier J N (1951) Theory of Elasticity. McGraw Hill Book Company, New Yourk, SUA 

[15] Stanciu M.D., Cosereanu C., Dinulica F., Bucur V., Effect of wood species on vibration modes of violins 

plates. Eur. J. Wood Prod. (2020) vol 78, pp. 785-799. https://doi.org/10.1007/s00107-020-01538-5 

[16] Gliga V. Gh. Stanciu MD, Nastac S.M, Campean M., Modal Analysis of Violin Bodies with Back Plates 

Made of Different Wood Species, BioResources, 2020, vol 15(4), pp. 7687 – 7713.   

 

http://iopscience.iop.org/article/10.1088/0034-4885/77/11/115901/pdf
https://doi.org/10.1007/s00107-020-01538-5

