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Abstract: By studying and interpreting elastic waves, both at the theoretical level and at the level of mathematical modeling, 

one can observe the necessity of introducing the D`Alembert operator thus, the fundamental equation of the wave becomes 

better defined. Regarding the applicability of the mathematical model within the transverse elastic wave we can observe the 

equation deduced by Isaac Newton,the "vibrating string equation" , known as the keystone of the study of elastic waves. 

Keywords: wave, oscillation, transverse, system, propagation   

 

 

1. INTRODUCTION 
 

The notion of wave appeared in close connection with the concept of oscillation [3, 6]. In general, oscillation 

means a disturbance of a system that has a certain periodicity of a given physical size, which locally characterizes 

the state of a physical system. 

Experience shows us that, in a material physical environment, any disturbance, regardless of its nature, propagates 

oscillatory "from close to close" through continuity, with a finite well-defined speed. The term wave is attributed 

to the space-time picture of a physical size whose perturbation propagates in a given environment. 

Thus, according to the nature of the induced disturbance, we can distinguish the following fundamental categories 

from where [3, 6]: 

a) Elastic waves, generated by the local mechanical disturbances of a physical system. They have material 

support that ensures propagation, the notion of substance. Thus, where elastic can exist in solid, liquid and gaseous 

environments, but they cannot exist in vacuum or in ether. 

b) Electromagnetic waves, generated by electromagnetic disturbances (E.M.). These where they have the 

support of propagation the electromagnetic field (a special form of existence of matter) and they propagate in any 

space occupied by the substance or not, or the eternal ether. 

c) Magnetohydrodynamic waves, present in plasma matter and which have as source complex plasma 

disturbances having both mechanical and electromagnetic characteristics. 

d) Thermal waves, generated by thermal disturbances of a well-defined system. 

e) Where "Broglie", these where they are associated with the microparticles whose movement they describe. 

Their existence is conditioned by the presence of a moving microparticle. 

Due to this wide variety of system disturbances, a large number of physical sizes can have local variations in the 

environments in which a wave propagates. Among these sizes we must remember; displacement, speed, density, 

pressure, temperature, electric field intensity, magnetic field intensity, and others [4, 8]. 

For each case, a theoretical model used in the simulation field can be constructed, describing the propagation of a 

disturbance. 

Once deduced and implicitly demonstrated the mathematical equations of propagation of the perturbations of 

various sizes of "waves", it can be seen that all waves have the same general mathematical form and depend in 

the same way on the nature of the environment in which they propagate. For these reasons, the general wave theory 

emerged as a purely formal theory, applicable to any type of wave. Universally accepted below we will note the 

size disturbed by the value ”Ψ”. Its value depends on both position and time.  

Thereby, the function Ψ = y(x,y,z,t) and it will be called "wave function". As the size Ψ reprezintă un scalar, 

vector sau tensor vom avea respectiv unde scalare, vectoriale or tensoriale represents a scalar, vector or tensor we 

will have respectively scalar, vector or tensor waves. 

The vector waves can be transverse or longitudinal as the direction of oscillation of the perturbed size is 

perpendicular to the direction of propagation of the wave, respectively coinciding with it. 
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Thereby, an environment is homogeneous if its physical properties are the same at any point, that is, they are 

independent of the position coordinates (x, y, z). Otherwise, (corollary) the environment is defined as 

inhomogeneous. 

Thereby, the environments in which a wave propagates impose certain characteristics of propagation. For this 

reason, it is necessary to characterize them. Thus, an environment is homogeneous if its physical properties are 

the same at any point, that is, they are independent of the position coordinates (x, y, z). Otherwise, (corollary) the 

environment is defined as inhomogeneous. 

Averages are isotropic if their physical properties are the same for any direction in which they are measured. If 

they depend on the direction, the media are said to be anisotropic. 

The environments in which wave propagation is done without entropy generation are called conservative 

environments and if the propagation process is accompanied by entropy generation then the environment is 

dissipative. 

An environment is dispersive when the propagation speed of the wave depends on its frequency, in non-dispersive 

environments the propagation speed is independent of frequency. 

An environment is called linear if the wave resulting from the superposition of several waves of wave 

functions Ψi, with i = 1 ... n, is described by the fundamental wave function (1): 

Ψ(x.y.z.t.)= ∑ Ψi (x. y. z. t. )𝑖        (1) 

 

Otherwise the environment is nonlinear, in the sum defined in equation (1) and the higher powers of the functions 

and also appear. 

A linear, homogeneous, isotropic, conservative and non-dispersive environment is called an ideal environment. 

In the study of general wave theory we will stochastically estimate the propagation of waves in ideal environments, 

establishing the fundamental characteristics of the wave phenomena. 

Where we deem it necessary, we will prove and study the dangers of propagating a wave in environments that, by 

certain properties, depart from the ideal environment. 

 

 

2. THE WAVE EQUATION 

 

In order to formulate the general wave equation let us consider an ideal one-dimensional "ether" environment such 

as, e.g. an ideal long continuous chord, figure 1. 

 

 
Figure 1: Long continuous chord 

  

Let's assume that at the moment t1 by an action before and outside the system under study, a disturbance of a 

magnitude appears ymax  described by the function (2) 

𝛹 = 𝛹𝑥=0(𝑡1)                                                                                 (2) 

Experience shows that this disturbance propagates in the environment considered as a study so that at the moment 

t2  the disturbance went through the unit of time Δt = t2-t1. 

If the environment under study is considered ideal, the shape of the disturbance will not change, it will have the 

same characteristics and its propagation will be at a constant speed. In these conditions we will have (3): 

       𝛹𝑥=0(𝑡1) = 𝛹𝑥(𝑡2)             (3) 

Noting further with v as the speed at which the disturbance propagates in the studied environment, we observe that 

between the moments t1 and t2, with the specification that (t2 > t1) the following relationship will exist (4): 

𝑡2 = 𝑡1 −
𝑥

𝑣
              (4) 
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Substituting t2 in the equation (4), we get the equation (5): 

𝛹𝑥(𝑡)1 = 𝛹𝑥=0 (𝑡2 −
𝑥

𝑣
)            (5) 

Meaning, we'll get the equation (6): 

𝛹(𝑥, 𝑡) = 𝛹𝑥=0 (𝑡2 −
𝑥

𝑣
)            (6) 

If the disturbance in point t1 is a harmonic oscillation, the function𝛹𝑥=0(𝑡)1 it will take shape (7): 

𝛹(𝑡) = 𝐴𝑒𝑖𝜔𝑡2
             (7) 

and the oscillation in the point t2 will be described by the function (8): 

𝛹(𝑥, 𝑡) = 𝐴𝑒𝑖𝜔(𝑡−
𝑥

𝑣
)
             (8) 

We will note the value”k” the ratio between the pulsation ω of oscillation and speed v with which this propagates 

in the respective environment (9): 

𝑘 =
𝜔

𝑣
              (9) 

This ratio is even the module of the wave vector whose direction indicates the direction in which the wave 

propagates. How 𝜔 =
2𝜋

𝑇
, this equation (9) becomes (10): 

𝑘 =
2𝜋

𝑣𝑇
=

2𝜋

𝜆
            (10) 

where we observe (11): 

𝜆 = 𝑣𝑇            (11) 

Thereby, λ represents the wavelength. This is a characteristic wave size and represents the distance traveled by a 

wave in a period Δt. Thus, the wave function (8) gets (12): 

𝛹(𝑥, 𝑡) = 𝐴𝑒𝑖𝜔(𝜔𝑡−𝑘𝑥)           (12) 

We mention that the argument of the wave function 𝛹 (x,t), respectively ω(x,t) = ωt - kx, represents the phase of 

the wave, and the surface on which the phase is constant is called the wavefront. The wave function (12) describes 

a plane harmonic wave which, moving along the Ox axis in the sense of positive x, it is a progressive wave. 

Further defining the wave vector�⃗�  as it is (13): 

�⃗�  = 
𝜔

𝑣
 1⃗ 𝑘           (13) 

where 1⃗ 𝑘 is the direction of the propagation direction and considering the environment in which the three-

dimensional propagation takes place, the wave function will be written (14): 

Ψ(𝑟 ,t) = 𝐴𝑒𝑖(𝜔𝑡−�⃗�  𝑟 )           (14) 

We will see below that the wave function (14) satisfies a differential equation of the second order, linear and 

homogeneous, its explicit form resulting from simple operations. 

To do this, let's calculate the second order derivatives of the function Ψ in relation to x.y.z. so (15): 
𝜗𝛹

𝜗𝑥
= −𝑖𝑘𝑥𝛹,       

𝜗2𝛹

𝜗𝑥2 = −𝑘𝑥
2𝛹 

𝜗𝛹

𝜗𝑦
= −𝑖𝑘𝑦𝛹,       

𝜗2𝛹

𝜗𝑦2 = −𝑘𝑦
2𝛹 

𝜗𝛹

𝜗𝑧
= −𝑖𝑘𝑧𝛹,       

𝜗2𝛹

𝜗𝑧2 = −𝑘𝑧
2𝛹          (15) 

Summarizing the partial derivatives of the second order and taking into account the fact that 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 = 𝑘2, 

we will get the equation (16): 
ϑ2Ψ

ϑx2 +
ϑ2Ψ

ϑy2 +
ϑ2Ψ

ϑz2 = −k2Ψ         (16) 

an equation which can also be written in the form (17)  

𝛻2𝛹 = −𝑘2𝛹           (17) 

where (18): 

𝛻2 =
ϑ2

ϑx2 +
ϑ2

ϑy2 +
ϑ2

ϑz2 ≡ Δ         (18) 

is defined as the Laplace operator. 

If we continue to calculate the partial derivative of the second order of the function Ψ relative to time , we will 

get (19): 
𝜗𝛹

𝜗𝑡
= 𝑖𝜔𝛹,

𝜗2𝛹

𝜗𝑡2 = −𝜔2𝛹          (19) 

By combining the above results, the equation results immediately (20): 

𝛻2𝛹 −
1

𝑣2

𝜗2𝛹

𝜗𝑡2 = 0           (20) 

Introducing the D`Alembert [3, 7] operator we will have (21): 

⎕ ≡ 𝛻2 −
1

𝑣2

𝜗2

𝜗𝑡2           (21) 

this equation takes on a much more concise form, so we identify (22): 

⎕𝛹 = 0            (22) 

Equations (21) or (22) represent the general equation of the waves in absolutely ideal-etheric environments. 
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3. TRANSVERSAL ELASTIC WAVE 
 

The D'Alembert equation [3, 7] describes the propagation of any type of wave in an ideal environment. We will 

be able to find such equations, establishing the concrete expression of the propagation speed for the transverse 

elastic waves, which can exist only in solid bodies, as well as for the longitudinal elastic waves that propagate in 

both solids and fluids. 

Transverse elastic waves appear, (e.g. along an elastic cord fastened to both ends). By removing a small portion 

of the string from the equilibrium position [3, 5], a local disturbance occurs which due to the interaction forces 

between the disturbed point and the neighboring points propagates along the string. 

Consider, further, such a chord, homogeneous, of mass (m), whose points p1 and p2, following the 

induced excitation perform oscillations in the vertical plane. Let us note further with 𝐹  the tension in 

the rope, the same along the entire length of the given string, figure 2. If the deformations are small 

enough, the angles α and α', with α' = α + dα, are also small so that sin α ⩰ tg α ⩰ 𝛼, and cos α ⩰ cos α` ⩰ 1. 

Also, the slope of the string element K is small, respectively (23): 

𝐾 =
𝜗𝛹

𝜗𝑥
=

𝐹𝑦

𝐹
⩰

𝐹`𝑦

𝐹
≪ 1         (23) 

By graphically exemplifying the above equation we obtain figure 2. 
 

 

Figure 2: Transverse elastic wave 

As obviously (24): 

𝐹𝑥 = √𝐹2 − 𝐹𝑦
2           (24) 

for small deformations, we will have (25): 

𝐹𝑥 = 𝐹√1 − 𝐾2  ⩰ 𝐹           (25) 

Similarly, if the relation (25) for the component is considered 𝐹𝑥
` we will get the same value (26): 

𝐹𝑥 = √𝐹2 − 𝐹𝑦
2 = 𝐹√1 − 𝐾2 ≅ 𝐹         (26) 

The last two relationships show us that the result of the components of the tension F along the axis Ox, namely 

(28): 

𝑑𝐹𝑥 = 𝐹𝑥
` − 𝐹𝑥            (28) 

       is zero, so the introduced transverse disturbance does not cause oscillations according to the direction Ox. The 

result of the tension forces acting on the rope portion is a force dFy whose size will be (29): 

dFy = Fy (x + dx) - Fy(x) = F[K (x + dx) - K(x)]        (29) 

Developing in series K(x + dx) and keeping only the first two terms we will  get (30): 

𝑑𝐹𝑦 = [𝐾(𝑥) +
𝜗𝐾

𝜗𝑥
𝑑𝑥 − 𝐾(𝑥)] = 𝐹

𝜗𝐾

𝜗𝑥
𝑑𝑥        (30) 

Taking into account his expression K (23), the equation (30) becomes (31): 

 𝑑𝐹𝑦 = 𝐹
𝜗2𝛹

𝜗𝑥2 𝑑𝑥           (31) 

The action of force d𝐹𝑦 on the mass string element (dm) causes an acceleration ay of the following form (32): 

𝑎𝑦 =
𝜗2𝛹

𝜗𝑥2 𝑑𝑥            (32) 

as it results from the fundamental equation of dynamics, namely (33): 

𝑑𝐹𝑦 = (𝑑𝑚)𝑎𝑦           (33) 
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How ”dm=ρSdl”, where ρ represents the mass density, S represents the string section, and dl ⩰ dx. Taking into 

account equation (32), equation (33) becomes (34): 

𝐹
𝜗2𝛹

𝜗𝑥2 𝑑𝑥 = ρ𝑆
𝜗2𝛹

𝜗𝑡2 𝑑𝑥           (34) 

From here, the differential equation of the transverse elastic waves produced in a vibrating string [1] immediately 

results (35): 
𝜗2𝛹

𝜗𝑥2 −
1

𝑣2

𝜗2𝛹

𝜗𝑡2 = 0           (35) 

where we have (36): 

𝑣 = √
𝐹

𝜌𝑆
= √

𝐹

𝑚0
= √

𝜏

𝜌
           (36) 

 Where 𝑣 is the speed at which the transverse wave propagates in the vibrating chord [1, 2] of mass density (ρ), 

respectively of linear mass density (m0) where the mechanical tension is”F”, respectively the unitary effort will 

have a value of (37): 

𝜏 =
𝐹

𝑆
            (37) 

Equation (37) was deduced from Isaac Newton and is respectively known as the "vibrating string equation". 

 

 

4. CONCLUSION 
 

We can conclude by the fact that the study of the waves and their characteristics, using d’Alembert operator, is the 

keystone of the wave dynamics through different propagation media, thus allowing the identification and solving, 

at the theoretical level, of the various errors and ambiguities that can be made, and can slip into different computer-

assisted computing systems, which can lead to real-time rectification and recalibration of mathematical wave 

models as well as all their related applications. 
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