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Abstract: The aim of the paper is dynamic modelling of linkages used in airplane control, on bases of the Multibody System 

method (MBS). In virtual prototyping of the aircraft, these linkages have to be modeled by a minimum number of bodies (MBS 

min). In the paper an appropiate algorithm is descriebed and also applied for concrete mechanical systems. This will be the 

bases for dynamic modelling of these subsystems as parts of the whole product.  
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1. INTRODUCTION  

 

The aircraft control motion (roll,pitch,yaw) during the flying by appropiate systems is made. The name and location 

of these systems are given in figure 1 -- for a small airplane [5]. Their actioning is made from the pilot usually by 

intermediate of mechanical transmissions (linkages, cams, etc). 

In design process of an aircraft (very complex product) one of the main step is virtual prototyping, whose aim is 

analysis and dynamic behavior optimization by using software. That means a unitary modelling of all the 

subsystems of the aircraft.  

In virtual prototyping of the aircraft, mechanical syatems are considered as Multibody Systems (MBS). They have 

to be modelled as MBS with minimum number of bodies.  (MB min) to favorise obtaining real time simulation of 

the whole product (aircraft). 

The aim of this paper is dynamic modelling of linkage used for actioning of aileron, as multibody systems. On bases 

of MBS, kinematic and dynamic models could be obtained. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1 Small aircraft 

 

 

2. THEORY 

According to MBS theory , a mechanical system is considered as a collection of bodies linked between them by 

geometrical and driving constraints[7,3,9,11]. 

The body is an entity which in the dynamic model will have mass and moment of inertia, and also could take over 

the external forces.  

In a concret mechanical system , a body could be fixed or moobile, input/output body, body with two or more 

connections. 

 In a linkage having “n” elements number of bodies nb is : 

(1) 
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nb   n 

 Generally  

nb min   nb   n 

nb min representing the minimum number of bodies for modeling a concrete linkage.  

The motion of the mobile bodies is descriebed in a space whose number of dimension is S . of course S=3 for planar 

systems and S=6 for the systems in three dimensional space.  

The geometrical constraint imposes restrictions in bodies relative motion. Number of restriction is r =1 and r = 2 in 

the case of planar systems (S =3), respectiv r = 1…5 in the case of three dimensional systems (S = 6). 

The restrictions are imposed by joints or composite joint [1,5,9,11]. In planar systems they are:  

rotation R (r =2), translation T (r =2), rotation-rotation RR (r =1), rotation –translation RT (r =1), curve –curve CC 

(r = 1) [7,9,10]. 

 Driving constraints corespond to the mobility M of the system Of course M   1 . 

 Between number of bodies nb , number of geometrical constraints (Σr) in a concrete space S , and mobility M , 

there is the relation: 

M = S (nb - 1) – Σ r 

The algorithm for MBS modelling with minimum number of bodies has the following steps: 

  a. Identifying the bodies , in order: 

- fixed body, 

- input body (bodies), 

- output body (bodies), 

- bodies with more than two connection,  

- bodies with applied forces,  

- other bodies (if necessary). 

b. Identifying geometrical constraints: 

- type  

- location, 

    -  number of restriction  

 

 

3. CONCRETE LINKAGE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Aileron control - Body Reference Frame (BRF) and Global Reference Frame (GRF) 

 

Table 1: Aileron control (figure 2) 

Body i 

Body j gc Location 
Number of 

constraints 

1-2 R A 2 

1-3 - - - 

1-4 - - - 

1-5 R C 2 

1-6 - - - 

2-3 - - - 

2-4 R B 2 

2-5 - - - 

(2) 

(3) 
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2-6 - - - 

3-4 R J 2 

3-5 - - - 

3-6 RR HI 1 

4-5 R E 2 

4-6 R G 2 

5-6 RR DF 1 

 

Number of bodies: 

    nb = 6 

Mobility M =1 

   M = S (nb - 1) – Σ r 

   M=3(6 – 1) – 14 =1 

Space: 

   S =3 

And: 

   Σ r = 14 

The linkage from fig 2 is modeled as MBS having 6 bodies, six geometrical constraints type R and two geometrical 

constraints type RR. The input body is body 2 and the output body is the flap3. It has mobility M =1.  

The bases of these linkages is wing structure, that represent for the linkages – fixed body(GRF).  

Coordinate system attached to fixed body (body number_1) represent GRF (Global Reference Frame) – (see figure 

2). Coordinate system attached to mobile body represent BRF (Body Reference Frame). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Aileron control – 3D-Model- Simulated by ADams 

 

VERIFY MODEL: aileron_1 

 

-8 Gruebler Count (approximate degrees of freedom) 

7 Moving Parts (not including ground) 

10 Revolute Joints 

1 Degrees of Freedom for .aileron_1 

 

There are 9 redundant constraint equations. 

This constraint:           unnecessarily removes this DOF: 

  .model_1.JOINT_1  (Revolute Joint)  Rotation Between Zi & Yj 

  .model_1.JOINT_2  (Revolute Joint)  Rotation Between Zi & Xj 

  .model_1.JOINT_3  (Revolute Joint)  Rotation Between Zi & Xj 

  .model_1.JOINT_4  (Revolute Joint)  Rotation Between Zi & Xj 

  .model_1.JOINT_5  (Revolute Joint)  Rotation Between Zi & Xj 

  .model_1.JOINT_6  (Revolute Joint)  Rotation Between Zi & Yj 

  .model_1.JOINT_7  (Revolute Joint)  Rotation Between Zi & Xj 

  .model_1.JOINT_7  (Revolute Joint)  Rotation Between Zi & Yj 

(4) 
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  .model_1.JOINT_10 (Revolute Joint)  Rotation Between Zi & Xj 

Model verified successfully 

  

Coordinate system attached to mobile body  “I”, BRF, is  OiX , OiY , OiZ . 

Generalized coordinates matrix 

[qi] = [ OiX , OiY , OiZ  , α , β, γ ] T 

 Newton-Euler D’Alembert equation 
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where, ][
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iF  represente ext forces matrix, ][
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iF , geometrical constraints forces matrix, ][
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iF , inertials forces 

matrix. 

For body “i”, and three directions, X, Y, Z, matrix form for equations are 
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The tensor of inertia matrix, from Global_Reference_Frame, GRF 
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Where centrifugal mass moments and axial mass moments are 

XY
I ,

XZ
I ,

YZ
I , 
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I ,
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I ,
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I   

Inertial massic moment from one axe, is 

)mm*g (  22
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Mass matrix is 

(5) 

(6) 
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Where 

[qi] = [q1, q2, q3, q4, q5, q6 ]T = [ OiX , OiY , OiZ  , α , β, γ ]T 

Final system from geometrical constrainta is 

[F( OiX , OiY , OiZ  , α , β, γ)] = 0 

 From kinematic constraints we are 

γ = f (t) 

Generalized velocities matrix 
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Primary target from this dynamic solution by MBS method, is bodies motion with all forces and weights. 
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Jacobian matrix from geometrical constraints is ][ iJ . 

Column matrix from Lagrange multiplier is ][ i . 

From Newton-Euler D’Alembert equation , equilibrium of forces 
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We have 
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From  ][ iJ , numbers of rows is equal to numbers of equqtions from geometrical constrainta. 

From  ][ i , numbers of terms is equql to number of equqtions from geometrical constraints. 

 

 

4. CONCLUSION 
    

Present research in the multibody dynamics has been developed by computer techniques. Modern industrial design 

use computer for analyzing rigid multibody systems. Automatic process in this case offer many solution in short 

time.  

(10) 

(11) 

(12) 

(13) 

(14) 
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For aircraft design many equations needs simultaneous solutions. Many mechanical aircraft systems work together 

in different conditions. Performance analysis of this used a new applications software. MBS is a modern method for 

dynamic simulations and virtual prototype.  
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