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Abstract:  This paper is devoted to describing and illustrating pseudospectra and the connections of 

pseudospectra with related quantities for non-normal matrices, in particular, the distance to instability, the H 

norm, and distance to uncontrollability.  Pseudospectra and related quantities became a standard tool in the 

1990s, with applications in mechanics, numerical analysis, operator theory, control theory, differential and 

integral equation. In all of this fields it has been found that in case of pronounced non-normality, eigenvalues and 

eigenvectors alone do not always reveal much about the aspects of the behavior of a matrix or operator that 

matter in applications, including phenomena of stability, convergence, and resonance, and that pseudo-

eigenvalues and pseudo-eigenvector may do better.  
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1. INTRODUCTION  
 

A new tool has become popular in the 1990s for the study of matrices and linear operators. The traditional tool is 

eigenvalues or spectra for matrices or linear operators respectively. Eigenvalues and spectra tend to be less 

informative however when the matrix or operator is non - Hermitian or more generally non-normal. For some 

matrices, non-normality (nonorthogonality of the eigenvectors) may be physically important. For example, non-

normality can be associated with transient behavior that differs entirely from the asymptotic behavior suggested 

by eigenvalues. In extreme cases, non-normality combined with the practical limits of machine precision can 

lead to difficulties in accurately finding the eigenvalues.  

Pseudospectra is a familiar tool available for learning more about the cases in which non-normality may be 

important. Pseudospectra are sets in the complex plane bounded by level curves of the norm of the resolvent. 

Pseudospectra seem to have been invented independently (with different names) at least five times by Henry 

Landau (1975,1976,1977), Varah (1979), Godunov, Kiriljuk and Kostin (1990), and Hinrichsen, Pritchard and 

Kelb (1992,1993). The first person to define the notion of pseudospectra was Henry Landau at Bell Laboratories 

in the 1970s, who was motivated in part by applications in lasers and optical resonator. Figure 1 shows 

pseudospectra of integral operator investigated by Landau [6]. 

Pseudospectra and related quantities for non-normal matrices and operators where investigated in the 1970s and 

1980s [3] and became a standard tool in the 1990s [11], with applications in fluid mechanics, numerical analysis, 

operator theory, control theory [4], differential and integral equation [2]. In all of this fields it has been found 

that in case of pronounced non-normality, eigenvalues and eigenvectors alone do not always reveal much about 

the aspects of the behavior of a matrix or operator that matter in applications, including phenomena of stability, 

convergence, and resonance, and that pseudo-eigenvalues and pseudo-eigenvector may do better. 

  

 

2. SPECTRA AND PSEUDOSPECTRA. COMPUTATIONAL ASPECT 

 

Suppose we have a square n-by-n complex matrix, 
nnCA  . The spectrum of A denoted by )(A , is it set of 

eigenvalues, a finite subset of C consisting of a most n points. For any Cz  the resolvent of A at z is the matrix 

or linear operator 1)(  AzI , if this exists.  An equivalent definition of )(A is that it is the set of Cz where 

the resolvent does not exist or is unbounded. 

So, the eigenvalues of A satisfy the following definition 
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     dundefinine is)(epoint wher0)(det:)( 1 IAIACA    (1) 

 

If λ is an eigenvalue of A, then by convention we define the norm of 1)(  IA   to be infinity. But what if 

1)(  IA   is finite but very large?  

This pattern of thinking leads to a first definition of -pseudospectrum 

 

    11)(:)(    IzACzA                        (2) 

 

Note )()(0 AA  . In words the pseudospectrum is the subset of the complex plane bounded by the 
-1

 level 

curve or curves of the resolvent norm. Equivalently, the -pseudospectrum can be defined in terms of 

eigenvalues of perturbed matrices 

 

    ,)(:)( AzCzA  (3) 

 

Here Δ is a perturbation. In words the pseudospectrum is the set of all complex numbers that are in the spectrum 

of some matrix or operator obtained by a perturbation of norm at most . This definition implies that 

pseudospectra can be interpreted in terms of perturbations of spectra but this does not mean that the analysis of 

perturbations is the main thing pseudospectra are useful for. 

On the contrary other aspects of behavior of a matrix or linear operator tend to be more important in applications 

including growth or decay of nA  as a function of n and growth or decay of tAe  as a function of t.   

A starting point for computations is a third equivalent defintion of pseudospectra. If  )(m in A  denotes the 

smallest singular value of A then we have  

 

 })(:{)( min   AzICzA  (4) 

Thus the pseudospectra of A are the sets in the z-plane bounded by level curves of the function )(min AzI  .  

For details of the equivalence of (2-4) see for example van Dorsselaer, Kraaijevanger and Spijker (1993).The 

mathematical foundations of such material are set forth in the book by Kato (1976) [7]. 

If the matrix or operator A is normal (i.e., it has an orthogonal basis of eigenvectors), then its 2-norm epsilon-

pseudospectrum consists of closed balls of radius epsilon surrounding the eigenvalues, Figure 2. 

 

        

        Fig. 1 ε-pseudospectrum of Landau operator        Fig. 2 2-norm ε-pseudospectrum for a normal matrix 

 

All pseudospectra plots follow this general template. The eingesvalues are plotted as black dots on the complex 

plane, and colored lines mark the boundaries of various pseudospectra. The color bar on the right indicates the 

log10 of each boundnary. Notice that for some values of epsilon the pseudospectrum is connected, while for 

smaller epsilon it can consist of disjoint sets. Sometimes the pseudospectral boundary about an eigenvalue is too 

small to be clearly visible on the plots.  
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For calculate pseudospectra properly, the place to begin is with the singular value decomposition, tacking 

advantage of definition (4). The obvious algorithm is to evaluate )(min AzI   for values of z on a grid in the 

complex plane and then generate a contour plot from this data, for example in MATLAB code.  Computing the 

pseudospectra of a matrix of dimension N is traditionally an expensive task, requiring an O(N
3
) singular value 

decomposition at each point in a grid. The reason for the cost of computation of pseudospectra is now clear: the 

amount of work needed to compute the minimum singular value of a general matrix of dimension N is O(N
3

). 

However, several techniques have been developed to reduce this cost [7].  

A MATLAB code (Matlab GUI) for computing pseudospectra, created by Tom. Wright & Nick Trefethen, is 

available at www.comlab.ox.ac.uk/ouc1/people/nick.trefethen.html. Matlab Graphical user Interface (GUI), 

which automates the computation of pseudospectra after the eigenvalues of a matrix have been computed by eigs 

in Matlab. Figure 3 shows a snapshot after a run of EigTool. Initially the pseudospectra are computed on a coarse 

grid to give a fast indication of the nonnormality of the matrix, but the GUI allows control over the number of 

grid points if a higher quality picture is desired. Other features include the abilities to change the contour levels 

shown without recomputing the underlying values, and to select parts of the complex plane to zoom in for 

greater detail. The GUI can also be used as a graphical front end to our other pseudospectra codes for computing 

pseudospectra of smaller general matrices.  

For nonsymmetric matrices, the mathematical basis of these packages is the Arnoldi iteration with implicit 

restarting [8], which works by compressing the matrix to an “interesting” Hessenberg matrix, one which contains 

information about the eigenvalues and eigenvectors of interest. For general information on large-scale 

nonsymmetric matrix eigenvalue iterations, see [3]. 

 

 
 

Figure 3: a snapshot after a run of EigTool 

 

 

3. UNSTRUCTURED PERTURBATION AND LYAPUNOV EQUATION TECHNIQUE 
 

In section we use Lyapunov equations and functions to consider perturbed matrices. We will consider only affine 

unstructured parameter uncertainty (perturbations). 

The basic question is: what choice of Lyapunov function V would allow the largest perturbation and still 

guarantee that dV/dt is negative definite? By using a sub-optimal strategy and pseudospectra we find that this is 

determined by testing for the existence of solutions to a related „quadratic‟ equation with matrix coefficients and 

unknowns - the so-called matrix Riccati equation.  

We consider a linear time invariant finite dimensional systems of the form 

 

 }),()1((;),()( NR   ttxAtxttxAtx  (5) 

 

It is well known that the linear dynamical system described by equation (5) is asymptotically stable if 
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 ;}0Re{)(   zzA ;CC or 

 ;}1;{)(  zzA C  (6) 

Equivalently, for any positive definite matrix Q we can find a positive definite matrix P which satisfies the 

matrix Lyapunov equation 

 

 QAPPAT   (7) 

 

We need to consider not just one nominal system (6) but a family of models 

 

 xAx )(   (8) 

 

where Δ is a perturbation. 

The fundamental question is how large can we allow  so if   then all eigenvalues of perturbed matrix A+ 

Δ are guaranteed to have negative real part.  

Let λ be an eigenvalue of A+Δ. Then  

 

 uuA  )(  uuAI  )(  uAIu  1)( . 

 

Tacking magnitude of both sides and using matrix norm we obtain 

 

 1)( 1  AI  but       



1

)( 1  AI  (9) 

 

So, the pseudospectrum crosses over the imaginary axis at a value of ε and an imaginary number yiz   if 



1
)( 1  AIiy . 

Let xPxxV T)(  be Lyapunov function. The 
dx

dV
 calculation for perturbed system (8), with P solution of (7), 

gives 

 
22

1 2 xPx
dx

dV
   (10) 

 

where n ....0 21   are the eigenvalues of the positive definite matrix Q. 

From (10) result that 
dx

dV
 will be negative definite, from given Q, if we chose 

  
P2

1
   (11) 

 

So for ε given by (11) and for a given Q, if  , then every eigenvalue of (A+ Δ) has negative real part.  

 

4. STABILITY RADIUS VIA PARAMETRIZED RICCATI EQUATION 
 

In this section we study a strategy for increasing the size of ε, i.e. choose Q to maximize ε given by (13). It is 

obvious that the range of ε is dependent of choose of Q. To see this dependence we look at the eigenvalues of 

(A+ Δ) directly. For a given value of ε > 0 we look to plot the totality or set of eigenvalues of (A+Δ) for all Δ 

with   . For ε very small we would expect this totality or set of eigenvalues to be focused simply around 

the eigenvalues of the nominal A. As we increase ε then the set grows, expanding in sometimes amazingly pretty 

shapes.  

A question arise: can we get a handle on the smallest value of ε so that the contours intersect the right-half 

plane especially by our Lyapunov Equation technique. The smallest ε is determined as fallows: 

Theorem. Every eigenvalue of (A+Δ), with   has negative real part if and only if the parametrized 

algebraic Riccati equation 
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 022  PIPAPAT    (AREε) 

 

has a positive definite solution. 

P r o o f.  

 

QIPPPPPIAPPA TTTT  222 )()()()(   

 

provided that  . From (9) we shown that the smallest ε for which this can happen is the smallest we can 

make 
1)(

1
 AiyI

 ( m in ).  

Now why this smallest m in  got anything to do with the (AREε)? . If this equation has a solution then we can 

write 

 

0)()( 22*  PIAiyIPPAiyI  . 

 

Here (·)
*
 indicates transpose and complex conjugate. Then, multiplying the equation (on the left) by inverses of 
*)( AiyI   and )( AiyI   resp., we obtain 

 

))(())(()()( 1*11*12 IAiyIPIAiyIPAiyIAiyII   . 

 

It follows from this that necessarily  
1)(

1



AiyI

 . 

So we prove that the pseudospectrum at level ε lies entirely in left-half complex plane if and only if the Riccati 

equation (AREε) has a positive definite solution. 

 

5. PSEDOSPECTRA AND  CONTROL OF DYNAMICAL SYSTEMS 
 

For real matrices A and B of  size nn  and mn  respectively, consider the control system defined by 

 

 BuAxx   (12) 

This system is said be state controllable at 0tt   if there exist a piecewise continuous input u(t) that will drive 

the initial state x(t0) to any final state x(tf).  

Classical theory  provides a simple characterization of controllability. The above system is controllable exactly 

when the matrix [A−zI | B] has full row rank, n, for all scalars z  C.  

A small distance to uncontrollability correlates with various difficulties for the control system, including 

numerical challenges for associated “pole placement” problems. A simple argument [1] shows that the distance 

to uncontrollability is given by  

 ]|[min min BzIA
z





C

. (13) 

The function to be minimized in the expression (12) has lower level sets of the form 

 }]|[:{ min   BzIAz C   (14) 

which is the pseudospectra, when matrix B is empty. Substantial insight is gained from examples, so consider the 

parameterized matrix pair, [1],  
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where 1  and 2 are real parameters. Figures 4 and 5 show pseudospectra (produced using by T.Wright‟s 

software EigTool [5]) for, respectively, the controllable pair (15) when 121   and the un controllable pair 

(15) when 021  .  

 

 Figure 4: Pseudospectra for the                           Figure 5: Pseudospectra for the  

      controllable pair (14) with 121           uncontrollable pair (14) with 021   

 

The horizontal and vertical axes in the figures show the real and imaginary parts of z. The legends on the right 

sides of the figures show the contour heights (values of ) on a log 10 scale, with both plots using the same scale. 

In Figure 4, the “pseudospectral landscape” has three local minima and one can estimate that the global 

minimum value (by definition, the distance to uncontrollability) is about 10
−0.75

(in fact, it is 0.1872). In Figure 5, 

there are only two local minima (forming a complex conjugate pair), and one can see that the contours drop too 

much lower values (in fact, it is easy to check that the minimal value of (1.1) is zero at the points z =1 ± 2i). 

In Figure 4, the pseudospectra contain up to, but no more than, three connected components, depending on the 

choice of , while the pseudospectra in Figure 5contain up to, but no more than, two connected components. 

Maximization of the distance to uncontrollability for smoothly varying parameterized pair (A, B)(x) over vector 

of free parameters x  R
k
, is given with two algorithms namely the Trisection Variant of Gu‟s Algorithm and the 

BFGS/Gu Hybrid, [1]. Matlab implementations of the algorithms are freely available: 

http://www.cs.nyu.edu/faculty/overton/software.  

 

6. CONCLUSION 

 

Pseudospectra and related quantities for matrices (non-normal, dense, and sparse) and operators became a 

standard tool, with application in mechanics, optimization, control theory, numerical analysis, differential and 

integral equations. In all of these fields it has been found that in cases of pronounced non-normality, eigenvalues 

and eingenvectors alone do not always reveal much about the aspects of the behavior of a matrix or operators 

that matter in applications, including phenomena of stability, controllability, convergence, and that pseudo-

eigenvalues and pseudo-eingenvectors may batter. 

This paper is devoted to describing and illustrating pseudospectra and the connections of pseudospectra with 

related quantities, in particular, the distance to instability, the H norm, and distance to uncontrollability. 
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