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Abstract: Two main shortcomings of usual formulations, encountered in literature concerning the linear problems of
structural dynamics are revealed: the implicit, not discussed, postulation, of the use of Kelvin – Voigt constitutive laws
(which is often infirmed by experience) and the calculation difficulties involved by the attempts to use other constitutive laws.
In order to surpass these two categories of shortcomings, the use of the bilateral Laplace – Carson transformation is
adopted. Instead of the dependence on time, t, of a certain function f (t), the dependence of its image f# (p) on the complex
parameter p = χ + iω (ω: circular frequency) will occur. This leads to the formulation of associated non-classical eigenvalue
problems. The basic relations satisfied by the eigenvalues λr

#(p) and the eigenvectors vr
#(p) of dynamic systems are examined

(among other, the property of orthogonality of eigenvectors is replaced by the property of pseudo-orthogonality). The case of
points p = p’, where multiple eigenvalues occur and where, as a  rule, chains of principal vectors are to be considered, is
discussed. An illustrative case, concerning a non-classical eigenvalue problem, is presented. Plots of variation along the ω
axis, for the real and imaginary components of eigenvalues and eigenvectors, are presented. A brief final discussion closes
the paper.
Keywords: Non-classical eigenvalue problems, Laplace – Carson transformation, pseudo-orthogonality, multiple
eigenvalues, singular eigenvectors.

1. INTRODUCTION

The main object of the paper is represented by non-classical eigenvalue problems encountered in the linear
dynamics of structures (having, formally, a finite number of degrees of freedom). Matrix formulations are used
(vectors: lower case, bold, matrices: upper case bold, characters).
The main tool for calculations, used in the paper, is represented by thebilateral Laplace – Carson transform  [9],
according to which the relations between the original functions g(t) and their corresponding image functions
g#(p) are

g* (p) = p ∫-∞∞ e-pt g (t) dt where χ = Re p € (α, β) (1.1a)

g (t) = (1 / 2πi) ∫c- i∞
c-+i∞ [eptg* (p) / p)] dp where c € (α, β) (1.1b)

The starting point of the developments of the paper is represented by a view at the linear equation of motion for
the original functions,

M d2u / dt2 + C du / dt + Ku = f (t) (1.2a)

which becomes for the image functions, determined by the bilateral Laplace – Carson transform,

(p2M + p C+ K) u* (p) = f* (p) (1.2b)

The option for a critical reconsideration of the equation (1.2a) is determined by the fact that the constitutive laws
implicitly postulated in the formulation of this equation, which are of Kelvin – Voigt type, lead often to results
that are not confirmed by physical experience, while an attempt to adopt a different type of constitutive laws
leads to considerable difficulties for the calculation techniques in case one tries to deal with the original
functions.
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A (rather simplistic) frequently encountered approach in structural dynamics is represented by postulating for the
beginning the existence of ideally elastic constitutive law, which lead for the equations (1.2) to a classical
eigenvalue problem,

(- μ2M +K) v= 0 (1.3)

for which the solution is represented by a system of constant and real eigenvalues μrand eigenvectorsvr.
Thereafter, a correction is introduced just for the eigenvalues, in a way that is similar to the oneusable in case of
single degree of freedom systems. This approach keeps the eigenvectors real, while the eigenvalues become
complex functions of the variable p.
A more correct procedure would lead to the need to consider together all three matrices occurring in the
equations (1.2). It is shown[5] that the eigenvalue problem is in general irreducible to an eigenvalue problem for
the equation

(- μ2M +iμ C + K) v = 0 (1.3’)

It is reducible to that type of equation only in case the matrix C can be represented as a linear combination of
terms [K (M(-1) K) j] , where the values of j are integer, arbitrary. In case the eigenvalue problem corresponding
to the equation (1.3’) is no longer reducible to a classical problem, a correct way, dealt with in literature, is as
follows: the non-linear n-dimensional problem corresponding to the equation (1.3’), is replaced by a linear, 2n –
dimensional one. In this latter case the matrices used become usually non-symmetrical, while the solutions
become complex. Note that this latter approach is usable only in case Kelvin – Voigt constitutive laws are
admitted.
A different approach [7], [8], is adopted in the paper. An image equation

[p2M +K#(p)]u* (p) = f* (p) (1.4)

where, the case a Kelvin – Voigt constitutive law is admitted, is referred to. The matrix K#(p) would become in
this case equal to the matrix p C+ K of equation (1.2b), dealt with previously. In order to set up the constitutive
laws of structural components, the use of generalized Maxwell laws [6] is proposed [7], [8]. The generalized
Maxwell law is as follows: an ideally elastic (Hooke) component is connected in parallel with several Maxwell
type components. The solution adopted in this way benefits from two main advantages: on one hand,
experimentally determined characteristics can be approximated upon a desired interval of the ω-axis; on the
other hand, there exist methodological advantages raised by the analytical properties of the laws postulated,
characterized by the existence of poles (the matrixK#(p) is meromorphic)

2.  ANALYTICAL DEVELOPMENTS

2.1. Properties of some constitutive laws

To start, adiscussion on some alternative constitutivelaws is dealt with. Theselaws should allowdefining the most
appropriate kind of equations of motion for the dynamic systems investigated. Keeping in view the fact that the
main tool for analysis is represented bythe use of the bilateral Laplace – Carson transform (1.1), thisapproach is
based on the use of the transforms of original functions depending on time.Two basic entities are considered, for
illustration of the use of the transforms referred to: the normal stress, σ#(p) and the homologous local
deformation ε#(p). An explicite extension to tensorial functions is not necessary in this respect.
Two reference models, in which the elasticity (or elastic stiffness) modulus, E, and the viscous stiffness
modulus, η, intervene, are used:

- the ideally elastic model (called Hooke’s model), σ#(p) = E ε#(p) (2.1a)
- the ideally viscous model (called Newton’s model), σ#(p) = p η ε#(p) (2.1b)

The parameter E is the elasticity modulus, or the modulus of elastic stiffness. The parameter η is the viscous
stiffness modulus. These models are to be dealt with in adequate ways for performing specific analyses. The
parameters E and η are first used for connections in parallel or in series respectively and are to be combined in an
appropriate way to correspond to various goals of analysis.
The model of solid body with retardation (called theKelvin – Voigt model):

σ#(p) = E ε#(p) + p ηret ε#(p) = (E + pret η) ε#(p) = E (1 + p ηret / E) ε#(p) = E (1 + p тret ) ε#(p) (2.2a)

The model of viscous fluid bodywith relaxation (called the Maxwell model):

ε#(p) = σ#(p) / E + pσ#(p) / ηrel ,σ#(p) = [p E ηrel / (E + p ηrel)]ε#(p) = [E / (1 + p тrel)] ε#(p) (2.2b)
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The two lattermodels include two parameters of physical dimension time:the retardation time, тret,and the
relaxation time, тrel, respectively.
A first combination (in parallel) of these two models is the Poynting model

σ#(p) = [E0 + E1 / (1 + p тret)] ε#(p) (2.2c)

while a generalization of it is the generalized Maxwell model,

σ#(p) = [E0 + ΣkEk / (1 + p тret.k)] ε#(p) (2.2d)

The scalar models (2.1) and (2.2) may be extended to pluri – dimensional models, in order to derive specific
laws to structural models. The use of the model corresponding to relation (2.2d) is subsequently preferred. This
is because this option makes it possible to approximate the rheological properties of materials and, at the same
time, offer controllable singularities (poles of the theory of functions of a complex variable).

NOTE:
1. The fact that the denominators of the terms of expressions (2.2d), as well as of the denominator of

expression (2.2c), have real, positive, values leads to the fact that the poles intervening in the expressions of
terms of index k are placed on the negative half-axis, Re p <0, Im p = 0, at abscissae of (– 1 /  тret.k.).

2. The coefficients Ek of expression (2.2d) have the same physical dimension as that of the coefficient E0,
while their physical sense is to be specified for each of them.

2.2. Relations of structural dynamics for structures with various constitutive laws

Returning to the equations (2.2), a system of real eigenvectors to simultaneously diagonalize the matrix triad(M,
C, K) of the equation of motion does not exist in the general case for systems having Kelvin – Voigt constitutive
laws. The consequence of this fact is that, in the general case when the eigenvectors become complex, a transfer
of energy between the free vibrations corresponding to different eigenmodesoccurs. More generally, for a pair of
matrices [M, K#(p)], where the second matrix is variable, there does not exist a system of constant, real
eigenvectors in case the analysis is performed for bilateral Laplace – Carson transforms (where p is the complex,
independent, variable, replacing the time argument t,specific to analysis in the field of original functions).
This situation has important consequences, considered subsequently. On one hand, the property of orthogonality
of eigenvectors corresponding to different eigenmodes is no longer satisfied. It is consequently appropriate to
introduce some new concepts, namely the concepts of pseudo-orthogonality and of pseudo-normalization, which
generalize the classical concepts of orthogonality and normalization.
Given the advantages of use of the solutions of eigenvalue problems derived for the equation of motion, which
are illustrated inliterature for various cases, a generalization to the non-classical case was looked for. Two
orientations may be distinguished in  these studies:
a) approaches which are aiming at the direct determination of singularities (more precisely, the zeroes of the
determinant for the image impedance matrix Z#^(p) [1], [5]);

Z#^(p) = p2M + K#^(p) (2.3)

these approaches are usable, practically, in case of adoption of Kelvin – Voigt constitutive laws;
b) approaches aimed at deriving the inverse matrix Z(-1)#(p) of the matrix Z#(p), whichis a function of the p
variable [7];  this way is the only one dealt with in this paper, due to its more general usability.
Following developments are starting from the equation (1.4), where both matrices M and K#(p) are symmetrical
and lead to the eigenvaluesλr

#(p) depending on the p parameter, for the homogeneous equation

[- λ#(p) M +K#(p)]v* (p) = 0 (2.4)

for which the non-trivial solutions (in case the value of variable p to which the solution refers is not affected by
singularities), is represented by the eigenvalues λr

#(p) and the corresponding eigenvectors vr*(p). The existence
of non-trivial solutions implies for the equation zeroes for the determinant of [- λ#(p) M +K#(p)],

Det {- #M + K# (p)}= 0 (2.5)

2.3. The case of points pwhere the eigenvalues are different (i.e. simple)

Due to the symmetry properties of matrices, in case of two different eigenvalues λr
#(p) and λs

#(p), the
corresponding eigenvectors vr

#(p) and vs
#(p) are pseudo-orthogonal with respect to both matrices,

vr
#(p)TM vs

#(p) = 0 (r ≠ s) (2.6a)
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vr
#(p)TK#(p) vs

#(p) = 0 (r ≠ s) (2.6b)

(note: orthogonality would have involved that one of the factor vectors should be replaced by its complex
conjugate).
In a similar way, the pseudo-norm (with respect to matrix M) of a vector v#(p), m#(v), is defined by the relation

m#(v)2 = v#(p)TM v#(p) (2.7)

while the pseudo-normalized with respect to matrix Mhomologous vector v)(p), v#(M)(p), is given by the relation

v#(M)(p) = v#(p) / m#(v) (2.8)

In order to formulate some condensed relations, it is appropriate to define the matrix of eigenvectors,V#(p). Its
columns are represented by the eigenvectors vr

#(p) (arranged in the order of eigenvalues of rank (r)). In the same
way, it is possible to define a matrix of pseudo-normal eigenvectors, V#(M)(p). The condition of pseudo-
normalization may be rewritten as

vr
# (M)T(p) M vr

# (M)(p) = rs (rs : Kronecker’s symbol)) (2.9)

while a homologous relation for the matrix K#(p) is

vr
# (M)T(p) K#(p) vs

# (M)(p) = [λr
#(p) sr

#(p)]1/2rs (2.10)

The vectors vr
#(M)(p) span mono-dimensional subspaces which are invariant with respect to the pair of matrices

(M, K#(p)).
The relations

V(M)#T(p) M V(M)#(p) = In (In: unit matrixof dimension n) (2.11a)

V(M)#T(p) K#(p) V(M)#(p) = Diag {r
#(p)} (2.11b)

V(M)#T(p) M K(-1)#(p) M V(M)#(p) = Diag {1 / r
#(p)} (2.11c)

V(M)#T(p) Z#(p) V(M)#(p) = Diag {p2 + r
#(p)} (2.11d)

V(M)#T(p) M Z(-1)#(p) M V(M)#(p) = Diag {1 / [p2 +r
#(p)]} (2.11e)

(where the symbolDiag means a diagonal matrix of dimension n,while the impedance matrix, Z#(p), is defined
by the relation (2.3).
Conversely, the relations (having the sense of spectral expansions for the matrices of the dynamic system dealt
with) are

K#(p) = M V(M)#(p) Diag {r
#(p)} V(M)#T(p) M (2.12a)

K#(-1)(p) = V(M)#(p) Diag {1 / r
#(p)} V(M)#T(p) (2.12b)

Z#(p) = M V(M)#(p) Diag { p2 + r
#(p)} V(M)#T(p) M (2.12c)

Z#(-1)(p) = V(M)#(p) Diag {1 / [p2 + r
#(p)]} V(M)#T(p) (2.12d)

It may be shown that the properties accepted for the matrix K#(p)lead to the conclusion that the real and

imaginary parts of the eigenvalue #
r(p) satisfy the conditions

Re #
r(p)  0 for Re p 0 and

Im #
r(p) / Im p 0 for the whole plane {p,

while the poles of the eigenvalues #
r(p)can be placed only along the half-axis (Im p = 0, Re p 0) in case the

scalar constitutive laws of types (2.2) can be directly applied as constitutive laws between the specific vectors of
internalforces and the specific deformation components. It may be shown also that the eigenvalues #

r(p) are
stationary at the point v = v#

r(p), in case one considers the kind of variation of the expression #
r(p) = vT(p) K#(p)

v#(p) along the hyper-pseudosphere vTMv = 1.
The matrix K#(p) and the eigenvalues #

r(p) may be expanded into integer series of powers of (p - p0) [4]. The
eigenvectors v#

r(p) are uniform functions, which may be expanded in a similar way into series of powers. Due to
the condition (2.3), and to the fact that a complete basis exists, the eigenvectors do not have, at such points p,
zeroes or poles.
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2.4. The case of points p = p’, where multiple eigenvalues exist

The case of points p = p’, where multiple eigenvalues #
r(p) exist, raises special problems, which imposea

special kind of analysis, needing a revision of the calculation techniques usually adopted for  points p, where all
eigenvalues are different. Some features of the variation of the eigenvectors in the neighborhood of points p = p’
where a multiple eigenvalue #

r’ (p) exists, may be mentioned: the variation of the system of eigenvectors in the
subspace spanned by the system of eigenvectors corresponding to a multiple eigenvalue #

r’ (p) must be replaced
by a chain of principal vectors [10]. The diagonal submatrix corresponding to the chain referred to will no longer
be a diagonal one, but is to be replaced by a submatrix of Jordan’s canonic type [10]. The relations developed
previously in subsection 2.3 of the paper must be correspondingly adapted. As mentioned in the noteof
subsection 2.1, item 1, in the problems dealt with in the paperthis is not expected to happen.

3. ILLUSTRATIVE APPLICATION

The physical problem dealt with is related to the examination of the vibration of a dynamic system S consisting
of a mass connected by means of a perfectly elasticspring to a (vertical) axi-symmetrical foundation block that is
connected at its turn to the elastic half-space.Note here that the connection to the half-space involves dissipative
propertieseven in case of an ideally elastic half-space. This is due to the fact that during the vibration process the
energy is radiated from the foundation block, without returning to the contact zone. In order to keep calculations
as simple as possible, the dissipative properties of the contact zone are assumed to correspond to a Kelvin –
Voigt constitutive model. In agreement with themodelling and the approximate relations given in [2], the contact
of an axi-symmetrical block with the half-space is equivalent to a dynamic single degree of freedom system, for
which following input data were adopted:
- the mass ofthe rigid foundation block, including the equivalent mass pertaining to the half space material:

m1 = 15 t;
- the viscous stiffness of the system of contact with the  half-space: c1 = 4500 t/s = 4500 kNs/m;
- the elastic stiffness of the same contact system: k1= 3 000 000 t/s2 = 3 000 000 kN/m;
- the mass of the upper body: 5 t;
- the viscous stiffness of the contact system between the two bodies:c2 = 0;
- the elastic stiffness of the same: k2 = 100 000 t / s2 = 100 000 kN/m

The condition of zero value of the determinant corresponding to the equation of motion is

m1 m2 #2 – [ m1 k2 + m2 ( cp + k1 + k2)] # + k1 k2 = 0 (3.1)

with the solutions for the eigenvalues

I,II
#(p) =  < [m1 k2 + m2 (cp + k1+ k2)] -/+ {[m1 k2 + m2 (cp + k1+ k2)]

2 – 4 m1 m2 k1 k2}
1/2> / (2 m1 m2);

and for the eigenvectors respectively

v1r
# = (k2 -r

# m2 ) / nr
# (3.3a)

v2r
# = k2 / nr

# (3.3b)

where the denominator nr# has the expression

nr
# = [m1(k2 -r

# m2 )2 + m2 k2
2]1/2 (3.4)

The solutions (eigenvalues and eigenvectors) as functions of the non-dimensional parameter c/ k1,assuming p
= i , are presented in Figures 3.1 and 3.2 respectivelyfor the non-dimensional interval (0., 2.0) of c/ k1.
To note that the colors blue (for the real parts) and red (for the imaginary parts) respectively were used.It may be
remarkedthat a singularity occurs for the eigenvector vI,

#at a value of about 0.15 of the non-dimensional ratio c/
k1.Examining the plots presented, it turns out thatfor the system dealt with a strong dependence on the  non-
dimensional argument exists. Of course, one must take into account the fact that the results presented concern
directly the Laplace – Carson images and that a use of them for practical purposes involves in principle a
conversion to the field of originals for the functions of interest.

4. FINAL CONSIDERATIONS

The paper presented is dealing with a problem of wide interest, namely that of contributing to the adoption of an
instrument of analysis of the performance of dynamic systems having components characterized by linear
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constitutive laws of a quite high complexity. This may lead to analyses to be more realistic than the practically
exclusive use of Kelvin – Voigt constitutive laws, whichare so frequently encountered in the literature, without
the required comments.
The use of the bilateral Laplace – Carson transform represents a highly efficient tool of analysis. Learning this
procedure is recommended to those engaged in the linear analyses of various problems of structural dynamics.
Besides the direct transform, expressed by the relation (1.1a), which consists of usual integration,  the use of the
inverse transform (1.1b) based on the residue theorem of the theory of complex functions is highly
recommendable.
The appropriate consideration of the convergence band (α, β) that is specific to every functions dealt with,
should be carefully carried out.
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Figure 3.1. Real and imaginary parts of eigenvalues r
#(p)

Figure 3.2.1. Real and imaginary parts
of components of eigenvector v(M)
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Figure 3.2.2. Real and imaginary parts
of components of eigenvector v(M)

II
#(p)


