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Abstract

n last thirty years numerical analysis for structure of beams is one of main method
structures of civil constructions like bridges. In this paper authors present a
which can compute internal force (bending moment shear force), displacements
in every point of continuous beam and make an optimization with fully stressed
(ESQ).
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*introduction

Emile Clapeyron derived the equation of three-moment first time in 1857 using the
2al equations of beam bending. In fig.1 consider a continuous beam over several
that carrying arbitrary loads (in this case take only distributed loads).

Using the moment-area theorem, we will analyze two adjoining spans of this beam
e relationship between the internal moments of bending at each support and the
applied to the beam. Applying the principle of superposition to this two-span
we can separate the moments caused by applied loads from the internal
at the supports. The two-span segment can be represented by simply-supported
carrying the internal moments Ms, Mc, and Mp, (fig.2) .In (fig.2) we can observe that
moments create positive curvature in the beam and the internal moments Ms Mc,
drawn in the positive directions. The areas under the moment diagrams due to the
 loads in the simply-supported spans are A; and Ag; ds represent the distance from
support to centroid of area A;, and dy represent distance from the right support to
id of area Ay as shown in (fig.2). The moment diagrams due to unknown Ms, Mc,
are triangular, as shown in (fig.2).

From fig.2 we can observe that the elastic curve is a continuous beam, thus the
of the beam at the center support, is continuous across support. With other words
of rotation to the left center is the same as angle of rotation to the right of center.
inuity condition may be expressed as:

Ps =—@q , (1)

o, is the left angle of rotation at the center support ;
© is the right angle of rotation at the center support.
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Fig.2 Diagram of bending moment for each span

Using the second moment-area theorem, and assuming, that the flexural rigidity
is constant within each span, we can find the terms @;and @4 in terms of un
Moments, Ms, Mc and Mp and the known applied loads:
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Substituting relation (2) into equation (1) and re-arranging terms leads to the
moment equation.
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If flexural rigidity for each span is equal (Els= El;), the three-moment
became independent of E/. For application the three-moment equation numericaliy.
lengths, moment of inertia, and applied loads must specified for each span. Two co
applied loads are, point loads and uniformly distributed loads. In figure 3 is
expression of the right hand side in relation (3) for point loads acting on each span
distributed loads on the left and right spans.

If the-continuous beam have n+171 supports with n span, to find internal
(bending moment and shear force), the three-moment equation is applied to n-1
pairs of spans. In matrix formulation for a continuous beam with n supports and n-*
the three-moment equation became:

206



‘ ‘Fd 6d, A, 6d;A4; F.x
| Ay |y ™ - Eiii: - E[i'l: o Efl: G-
T | T - ;
5._ " !r % I g = i;‘:" Uy ~xq); (4.0)
Mmu=‘§x:"r—~7:l) Mm=.@xd(_’§_:d)
11 * * * + Fpﬁj:p ¥ * * i i ‘PM:F B 6d A, _6dd-4a' N
-HL__,; £ El 14 /A EISIS Eldld

3 3
T T :_Psls _Pa'ld :(4.)
B o w61, " 3el

Fig.3 Diagram of bending moment for concentrated load and distributed loads
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Applying the end-moment conditions My=0 M,=0 in relation (5) we obtain the final
matrix form for three-moment equations. Three-moment equation for a continuous beam
@wer n supports with n-7 span with distributed loads obtained can be written in matrix
o [C]{M}={D] . Where, [C] is matrix of flexibility and is symmetric; {M} vector of
Sending moment: {L} is vector of distributed load. If a numbering convention is adopted in
which support j lies between span j and span j+1, the three non-zero elements in row j of
matrix [C] are given by:

1, 4 I, ta L
s=—xup =Yy — C = x
Crm =gr 30 BB B =

A

Row / of vector {D} for the case of uniformly distributed loads (4.a) and the case of
point load (4.b):
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(18)
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The internal bending moments at the Supports are computed by solving system (5
{M}= [C}“{DI. Once the internal moments are found. the reactions at the supports cas
be computed from the static equilibrium (fig.4):
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Fig.4 Internal shear force and bending moment at end of span

After we having computed the reactions and internal moments, we can fing
shear force and moment diagrams from equilibrium equations. For example, consider
J between support j and support J+1 the internal shear force at support j in span |
calculated with relation (9.a) and the internal force at support j + 1 in span j is cal
with relation (9.b).

M -M, i, M,-M, A
T, = == s ; i ——p'z’ 94T, = _L—IL"_J : +—-—-—sz L (98)

/ i

After we calculate bending moment with Clayperon theorem for ends of each
calculate maximum bending moment along span and for these moments we
calculate stresses. In our analysis section is rectangular with height ~2and deps
Maximum stress for each span is:

6M

imax

bh*

2.ESO algorithm for structure with rigid jointed

e 1 Aninitial structure is defined including loads and support conditions;
* 2 Calculate maximum bending moment at end for each element of structure with
Calyperon theorem;

"M: max

» 3 Calculate stress for maximum bending moment o = 6_bh_ :
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siress with target value o, ;
“= stress (o > o,) is above target, increase height of section (h=h+inc) by a

w==ment, f absolute stress is below target(c <o), decrease height of section
& 2w 2 small increment;

=nc property (height of section ) diminished to zero h=0 remove element
=wre or if property reached some prescribed lower or upper bound then

= see If previously frozen member sizes need unfrozen;
change per iteration is within a small convergence tolerance or a
=2 Zeration limit has been reached , then stop and print results, in not go to 2,

@r=sent now two examples about how to use evolutionary structural optimization
=g structures.
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¥ig.5 Diagram of internal shear force and bending moment , angle of rotation vertical
displacements
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Example 2
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Fig.6 Diagram of internal shear force and bending moment , angle of rotation vertical
displacements

3.Conclusions

> Optimization with evolutionary structural optimization represents a good ¢

for complex structures with a high grad of redundancy.
» Method of fully stressed structure can be used for topolcgically optimization

when initial structure is a layout.
> Evolutionary structural optimization is an iterative method that has an ex

convergence.
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