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A NEW STERN HULL CONCEPT 

FOR COMMERCIAL SHIPS 

(TANASESCU’S STERN SHAPE) 
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Abstract: Since the apparition of the first commercial ships, the naval architects ceaselessly were racking their brains how to improve the existing hull forms. This paper tries to draw attention on and briefly documents the investigation work performed towards realization of a NEW STERN CONCEPT – having radial crenellated-corrugated sections (Tanasescu’s stern shape) -  devised by the author. For a long time, the conceiver thought how to design the two systems - hydroframe system and propulsion system - very important for a ship, so that the hydroframe may meet the propulsion and the propulsion may meet the hydroframe in an optimal way. Main objectives of the new suggested stern concept are designing more energy efficient, with lower noise generated level and better directional stability, ship hull forms. These are the fundamental problems that were shortly addressed and partially presented analytically, numerically and experimentally, hereinafter. Of course, the reasonable, successful practical applications of this new technical idea for the real world next generation of commercial ships depend on quickly devising suitable technological ideas.
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1.  Introduction


Today’s tendency in the commercial maritime transportation industry domain is represented by designing and building of bigger, faster and more energy efficient (energy saving) ships, but simultaneously having, a lower level of noise and vibration generated from them (due to propeller cavitation), in their stern hull structures. The ship hull forms (lines design shapes), for getting (obtaining) higher hydrodynamic qualities imposes aiming towards following three main objectives: - minimization forward resistance; - improving propulsion performance; - increasing global hydrodynamic stability. A good wake distribution from an immediately upstream parallel plane propeller disk can lead to increasing the propulsion output efficiency, reducing the formation of propeller cavitation (having as an indirect consequence decreasing of noise and vibration level induced in the stern structure). In plus, the global hull hydrodynamic directional stability improving by using of a special kind of stern having certain architecture (more appropriate), can not be but favorable. Evidently (obviously), the dynamics of a cavitating propeller depends on the system environment in which it is operating: in this sense the flow field within (of) a propeller mounted behind of a ship hull is very different from that one in an open water test or in a section of a cavitation tunnel. Thus, a propeller that is very efficient in open water can not be suited for a certain kind of stern shape. Due to this reason the wake distribution in propeller disk plane represents a key factor for designing of a ship hull stern surface. With a view to fulfilling of the general desiderata mentioned above the author of this project proposed a new kind of stern shape concept: with crenellated-corrugated sections (Tanasescu’s stern shape). By the using of this new stern concept the conceiver could imposed improve (change, modify in a good sense) water particles axial velocities distribution (uniformization) within the ship propeller disc. Much more, the new stern shape concept having crenellated-corrugated stern sections can combine the ship high speed with seakeeping upper characteristics. As supplementary background (that lead at the new stern conceiving), for justification of my new stern concept having crenellated corrugated sections I can mention: - stream tube theory (the water particles axial velocities distribution at entrance in the propeller disk can be configured favorably – homogenized – by comprising the radial crenellated-corrugated stern sections in a stream tube that includes also the propeller disk), - Bernoulli effect (increasing of fluid (water) particles flow velocities of fluid (water) particles in the regions within which the fluid pressure is decreased). 

2.  The New Stern Concept 

Always, but especially in contemporary conditions (circumstances) of apparition (emerging) of some modern stern shapes (more and more complex), improving propulsion and stability performances represented and represent an important distinct problem for researchers from naval hydrodynamics field and not only. The cause of this remarkable interest is owed to the fact that a good distribution of the wake from an upstream plane, parallel with the propeller, can lead both to propulsion efficiency (output) increasing and propeller cavitation decreasing. In its turn propeller cavitation decreasing has as an extreme positive consequence, namely: noise and vibration level in stern structure reducing. Obtaining of a good wake distribution is an important objective of all naval architects. Moreover, hull global stability improving by using of a special kind of stern having certain architecture (more appropriate), can not be but favourable. Before apparition of powerfull modern digital computers, the ship designers pre-establish the hulls shapes, then perform tests on models, in experimental model basins, for wake characteristics examination. If the wake properties cannot meet the expectation, they then modify the hull form and perform another test, repeating the process until satisfactory results are obtained. This methodology repeated cyclicly is a high time and cost consumer. As a consequence, in recent years theoretical models (physical-mathematical) and new numerical techniques were applied for in march performances study (forward resistance, required power at propeller blade) and attitude (global hydrodynamic stability) of hulls. Of course the final target (a little far-off) is represented by devising of some computational instruments able to simulate numerically, as precise as possible, both performances and dynamical attitude of full scale ships, in real working conditions. As a contribution in this direction the present paper is proposing the introduction of the direct and inverse problem, physical-mathematical modelling and numerical implementation (inclusive numerical treatment accuracy) of flow phenomena which can emerge in the case of hulls incuding a new stern shape concept having crenellated-corrugated sections (Tanasescu’s stern shape). 

In the case of naval propellers the fluctuating cavity volume (due to the interaction between wake generated by flow around ship hull and propeller) represents the most significant source for noise and vibration induced in stern structure.

Author consider as an interesting idea building of a new mathematical model, one-dimensional  flow  tube, which  includes   the   new  stern   effects  (having    practiced   radial crenellated - corrugated stern sections – Tanasescu’s stern shape) on (about) propeller. With this end in view, let us imagining a streamline tube, having cvasi-cylindrical increasing sections, which starts from front propeller disk and stretches until hull cylindrical region, including the whole stern zone of a classical hull with practiced crenellated-corrugated stern sections.

Of course the dynamics of a cavitating propeller is dependent of environment system in which it works. The flow field around a propeller mounted behind a stern hull is very different of that which is developed when a propeller is tested in open water or a section of a cavitation tunnel. A propeller that is very performant in open water can not be suited for a given stern shape. Due to this reason wake distribution in a propeller disk plane represents a key factor for a ship design. 

Taking into account the streamline tube theory and the Bernoulli effect, we can esteem (consider) that the 3D spectrum of flow generated around and outside of a classical stern hull having practiced transversal crenellated-corrugated stern sections can be substantially improved (modified, redistributed) by architectural optimization in the sense of axial velocities from a propulsion propeller immediate front plane uniformization (equalization) (see  Fig.1a  and  b). The  number of  crenellated-corrugated  teeth  and  their  heights  will  be  
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Fig. 1a Classical stern nominal wake
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Fig. 1b New stern concept nominal wake

optimized  by  direct numerical experiments. For each section the teeth step size (the distance between two consecutive crests or troughs) decreases on girth, from the centerline plane towards the boards. The maximum heights (amplitudes) of the crenellated-corrugated teeth will be progressively reached longitudinally in front of the propeller and transversally in the centerline plane, respectively. The directions of the crenellated-corrugated sections teeth crests and troughs longitudinal lines, which start immediately after the cylindrical zone, will be those of the stern natural streamlines (which can be established experimentally in a flow visualization test) for vortices turning up avoiding and for a minimum forward resistance obtaining.

The one-dimensional flow will be considered and analysed from four different sections of a stream tube (see Fig.2) which includes:
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Fig. 2 Stream tube theory and Bernoulli effect application 

as a supplementary background for new stern concept. 

1 – radial crenellated-corrugated stern (far upstream);

2 – the disk situated immediately (upstream) in front of the propeller;

3 - the disk immediately behind (downstream) the propeller;

4 - a disk downstream (far downstream);

The relation between far upstream and far downstream will be obtained by Bernoulli’s equation application (the Bernoulli effect).

The geometry numerical optimization for the new stern concept proposed with the view of axial velocities uniformization will be performed in two stages :

I – first a coarse one (direct problem) ;

II – second a fine one (direct problem coupled with inverse problem) ;

Direct problem solution involves finding effects based on a complete description of their causes. Inverse problem solution entails determining of unknown causes based on observation effects. Both problems (direct and inverse) will be solved recurrently in two succesive cycles.

3. Direct problem mathematical modeling [FLUENT]

3.1
Partial differential governing equations - finite volume method 

Nearly all fluid flow phenomena are governed by principles of conservation (mass, momentum, energy) and are expressed in terms of partial differential equations expressing these principles. Thus, the general transport equation may be written as: 
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This equation has unsteady, convection, diffusion and source terms. By studying the behavior of canonical elliptic, parabolic and hyperbolic equations we can understand the behavior of these different terms in determining the behavior of the computed solution. An analytical solution to a partial differential equation gives us the value of 
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 as a function of the independent variables (x, y, z, t). However, because of nonlinearities we must to resort to numerical methods. A numerical solution aims to provide us with values of  
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 at a discrete number of points in the domain. These points are called grid points, nodes or cell centroids, depending on the method. The process of converting our governing transport equation into a set of algebraic equations for the discrete values of  
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 is called discretization and the specific methods employed to bring about this conversion are called discretization methods. The ideal numerical scheme should be able to reproduce the influences stipulated above correctly. We must examine numerical methods (finite difference method, finite element method, finite volume method) for solving this type of equation and identify the main components of the solution method. In this paper, as discretization method has been chosen the finite volume method: - collocated (cell-centered) formulation (Fig. 3); - locally and globally conservative; - can handle arbitrary convex polyhedral cells; - second order accurate in space and time:

   • convection terms
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   • diffusion terms 
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, are discretized with second order central differencing scheme;  
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Fig. 3 Collocation (cell-centered) formulation

The equation discretization
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by applying the Gauss divergence theorem becomes 
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Fig. 4 

We solve for
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 which are rebuilt from the solution at cell centers (c0, c1, …).

Rebuilding of face value and gradient:

 - face value (upwind), Fig. 5
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Fig. 5 Face value (upwind)

- face gradient, Fig. 6


[image: image20.wmf](

)

(

)

(

)

[

]

1

0

c

c

f

2

1

f

f

f

Ñ

+

Ñ

=

Ñ

                                                                                           (5)

[image: image21.png]



Fig. 6 Face gradient

Therefore linear rebuilding is actually hinged on the calculation of the gradients.

3.2 Standard k – ω model

The standard k – ω is based on the Wilcox k – ω model which predicts free shear flow spreading rates that are in close agreement with measurements for far wakes, mixing layers, and is thus applicable to wall-bounded flows and free shear flows. The standard k – ω model is an empirical one based on transport equations for the turbulence kinetic energy (k) and the specific dissipation rate (ω):
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where: Gk - the generation of turbulence kinetic energy, k, due to mean velocity gradients; Gω - the generation of specific dissipation rate, ω; - Yk and Yω are the dissipation of k and ω due to turbulence; - Sk and Sω are user-defined source terms. 

3.3
Shear-stress transport (sst) k – ω model

A variation of the previous k – ω model called SST k – ω was developed by Menter to effectively blend the robust and accurate formulation of the k – ω model in the near wall region with the free-stream independence of k – ε model in the far field. To achieve this, the k – ε model is converted in a k – ω formulation. 

Unlike the k – ω model, the  SST k – ω model includes the following refinements: - the standard k – ω model and the transformed k – ε model are both multiplied  by a blending function and both models are added together. The blending function is designed to be one in the near-wall region, which activates the standard k – ω model, and zero away from the surface, which activates the transformed k – ε model; - the  SST k – ω model incorporates a damped cross-diffusion derivative term in the ω equation; - the definition of the turbulent viscosity is modified to account for the transport of the turbulent shear stress; - the modeling constants are different. 

These features make the  SST k – ω model more accurate and reliable for a wider class of flows than the standard k – ω model. The SST k – ω model has the following similar form: 
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3.4
Wall boundary conditions

The wall boundary conditions for the turbulence kinetic energy k equation in the k – ω models are treated in the same way as the turbulence kinetic energy k equation is treated when enhanced wall treatements are used with the k – ε models. This means that all boundary conditions for wall-function meshes will correspond to the wall function approach, while for the fine meshes, tha appropriate low-Reynolds-number boundary conditions will be applied. The value of ω at the wall can be specified as
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The asymptotic value of  ω+ in the laminar sublayer is given by
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where
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where
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 and ks is the roughness height. In the logarithmic (or turbulent) region, the value of ω+ is
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Which leads to the value of  ω in the wall cell as
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4. Inverse problem mathematical modeling [LEVENBERG-MARQUARDT]

By solving the previously presented direct problem the estimated (computed) axial velocity wake
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 is obtained using an estimated hull form (including of course the new stern concept) 
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.  In case of the inverse problem, the new stern concept main hull is considered unknown and dominated by a set of J collocation points. Besides, the desired distributions of dimensionless axial velocity component uxi on the propeller disk plane are considered available. In FLUENT, the axial velocity component Uxi is calculated by interpolation on the propeller disk plane circumferential (θ) and radial (ρ), obtaining the uxi(ρi , θi) ≡ uxi, i=1 to n, the number of sampling points on the propeller disk plane, ordered distribution.    

Minimizing the following objective function 
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with respect to the estimated paramaters Sj obtain
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Where: I is the number of propeller wake measurements points; J is the number of stern hull shape collocation points; 
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is estimated hull form (S – spline surface fitting); 
[image: image37.wmf]xi

u

^

are FLUENT computed axial velocity coefficients on the propeller disk’s locations
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The paper’s author propose inverse problem solving, at its turn in two sub-stages: I – original flat surface stern shape flow global pre-optimization; II – forced new radial crenellated-corrugated stern shape concept parametrized flow final-optimization.

5.  Conclusions


In conformity with the ideas and theories presented above the first both numerical and experimental results shown on the next following paper’s pages demonstrate (confirm) the viability of the NEW STERN CONCEPT (with radial crenellated – corrugated sections) proposed. 

It should be pointed out that some skill and experience are important in numerical and experimental setup as well as in making hydrodynamics judgments of a such complicated problem as the flow in the stern region of the ship’s hulls.

The paper is reporting only some preliminary findings of an Icepronav research project supported by the Ministry Education an Research from Romania. The project work will be continued and in the two following years. 

6.  Acknowledgements


I acknowledge with thanks to Ministry of Education and Research, Romania, FLUENT  representative  in  Romania, Icepronav’s management staff, Professor Alexandru Vasilescu (University of Galati), and all colleagues for their support, encouragement and goodwill.

7. Practical application to - B.A.E. OIL-TANKER 7000 TDW
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               Fig.7 Body plan (stern part)                          Fig. 8 Body plan (stern part) 

                        for the ORIGINAL                             for the NEW STERN CONCEPT 
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 Perspective view                                           From stern view
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                  From under base plan view                                        Profile view

Fig. 9 Different views for the modified after part

in conformity with the NEW STERN CONCEPT

8. Numerical results
[image: image45.png]N>

sazsovsssiayms w w8

Jun 23, 2008

FLUENT 6.2 (34, segregated, sstaw)

Path Lines Colored by Velocity Magnitude (mi's)



   [image: image46.png]Path Lines Colored by Velocity Magnitude (mi's) Jun 23, 2006
FLUENT 6.2 (3d, segregated, sstkw)




[image: image47.png]53053ekRnEBe b Bt I bBoklate -85

Jun 23, 2008

FLUENT 6.2 (34, segregated, sstaw)

‘Contours of Velocity Magnitude im's)



     [image: image48.png]N
>x

Jun 23, 2008

FLUENT 6.2 (34, segregated, sstaw)

‘Contours of Velocity Magnitude im's)




[image: image49.png]SRR ERaRRRE R R RER BaR R L REBRE

Velosity Vectors Golored By Velacity Magnitude (m's) Jun 23, 2008
FLUENT 6.2 (3, segregated, sstw)



     [image: image50.png]&%

£

LETEGIET

HE8

REEREBREES S

Velosity Vectors Golored By Velacity Magnitude (m's) Jun 23, 2008
FLUENT 6.2 (3, segregated, sstw)




     Fig. 10 ORIGINAL (INITIAL)                       Fig. 11 NEW STERN CONCEPT    
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9. Experimental results
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Fig. 12 Comparison ORIGINAL (INITIAL - left) – 

 NEW STERN CONCEPT (MODIFIED – right). 
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Un nou concept de pupa-carena pentru nave comerciale

(Forma pupa TANASESCU)

Rezumat: De la aparitia primelor nave comerciale, arhitectii navali au facut eforturi deosebite pentru imbunatatirea formelor carenelor navale. Aceasta lucrare documenteaza pe scurt munca executata pentru realizarea unui NOU CONCEPT DE FORMA PUPA – avand sectiuni crenelate-rotunjite radial (forma pupa Tanasescu) – inventat de autor. De multa vreme, autorul s-a gandit cum sa proiecteze cele doua sisteme –  hidrodinamic si de propulsie – foarte importante pentru o nava, astfel incat sitemul hidrodinamic sa se cupleze cu sistemul de  propulsie si sistemul de propulsie sa se cupleze cu  sistemul  hidrodinamic intr-un mod cat mai optim posibil. Obiectivele principale ale noului concept de forma pupa sugerat sunt proiectarea unor forme de carene cu o energetica mai eficienta, cu un nivel generat de zgomote mai redus si cu o stabilitate directionala cat mai buna. Acestea sunt problemele fundamentale care au fost pe scurt atacate si partial prezentate analitic, numeric si experimental in lucrare. 

Cuvinte cheie: hidrodinamica, nava, carena, pupa, curgere siaj.
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