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HYDRODYNAMIC PRESSURE ACTING ON A FREE DROP UNDER INTERFACIAL TENSION GRADIENTS
I-R. Stan*  M. Tomoaia-Cotisel**  A. Stan***
 Abstract: The aim of this paper is to correlate the effect of pressure forces on a free drop with the surface coverage degree, namely, with the extent to which the drop surface is covered with surfactant. Our calculations show that for a covered degree less then 680 these forces are negative.  This means that the forces exerted by the external liquid upon the drop are oriented towards the negative direction of the normal to the drop surface. In our opinion this force acts like a “hammer” generating the flow instability on the drop.
Keywords:   hydrodynamic pressure, interfacial tension gradient, free drop,  Marangoni effect.            

1.  Introduction
A drop submerged in an immiscible liquid, initially motionless, being at neutral buoyancy or at zero gravity is called free. The application of an interfacial tension gradient on the drop surface can cause various motions of the free drop in a liquid. The chosen tension gradient can be introduced in many ways. One of them, the subject of the present work, is caused by surface active compounds. The experimental works showed that surfactants, adsorbed on a free drop, lead to complicate movements of the drop.

Much attention was given to the translational movement [1-7] of the drop, which is thought as a direct consequence of the surface flow (i.e. the Marangoni effect), which in turn is caused by the interfacial tension gradients. To study the translational movement we considered only not deformable free drops. Previously, we showed, in a direct experimental way, that at small interfacial tension gradients and large viscosities, the drop behaves as being practically not deformable [4]. The use of the not deformable free drop and colored surfactants, allowed us to show, filming with a high-speed camera, the existence of a real surface flow on the drop. The spreading of the surfactant on the drop surface takes place with a distinct front dividing the drop surface into two regions, one covered (colored) and the other uncovered with surfactant molecules. 
 As a result of the surface flow, which causes the motion of the neighboring liquids by viscous traction, forces of hydrodynamic pressure will appear and act on the drop surface. Due to the symmetry, the resultant Fp of these forces, exerted by the surface flow on the drop, have the application point in the injecting point of the drop with surfactant. In our opinion these pressure forces determine all the drop movements, especially deformations, rotations and oscillations of the whole drop, as well as surface waves and the translational motion.

In our previous papers [4-7] we have studied only the translational motion of the drop, generated by the resultant forces Fp, after a large part of the drop surface is covered with surfactant. The aim of this paper is to correlate the effect of pressure forces acting on the 
drop, with the surface covering degree, namely with the extent to which the drop surface is covered with surfactant. Our calculations show that for a covering degree less then ( 680   the  
resultant pressure force is oriented towards the negative direction of the normal to the drop surface. This force acts like a “hammer” producing the shear-flow instability on the drop. This shear first generates surface waves which can transfer, by viscosities, their energy to the drop liquid producing internal waves [12]. These internal waves are similar with those of the sea waves named tsunami. So, we suppose that all deformations and oscillations of the drop under tension-active gradients are due to these internal waves, generated by this “hammer” effect. 
2. Hydrodynamic and mathematical model.

Here we report the generation and the evolution of the hydrodynamic pressure which appears after the adsorption of a surfactant by a motionless drop. To give a theoretical formulation of the surface flow, we will consider a drop L’ suspended in an immiscible liquid L. The force 
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when the densities of the two liquids are equal (ρ’=ρ) or in the absence of gravity (i.e. zero gravity, 
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=0). Such a drop is called “free” and is motionless. The theoretical model presented here considers that:

· the drop is initially at rest and a surface-tension gradient is established;

· a real radial surface flow (called Marangoni flow) arises on the drop surface, with a distinct front, and advances continuously;

· no surfactant transfer from the drop surface, inside or outside of the drop;

· bulk, drop and surface liquids are thought Newtonian, viscous and  incompressible; 

· the Reynolds number is assumed small, less than unity;


It is supposed that the initial surface tension is σ0. In a point on the drop surface, the interfacial tension is lowered to σ1, by injecting a surfactant (e.g. a droplet of 10-3-10-2 cm3 which is small compared with the initial drop) in a well-chosen point. A radial interfacial tension gradient (Π = σ0-σ1) appears and, as an immediate consequence, the Marangoni spreading of the surfactant is initiated [4]. 
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Fig. 1. The system of spherical coordinates
The symmetry of the problem suggests a system of spherical coordinates (r, θ, φ) with the origin placed in the drop center and with the Oz axis passing through the sphere in the point of the minimum interfacial tension, i. e. the injecting point of the surfactant. We underline that the injecting point of the surfactant on the drop surface may be taken anywhere, the drop being initially at rest. We shall take it like in figure 1.

The surfactant front position in the surface flow is noted by the angle θf. The interfacial tension σ is a unique function of angle θ. Inside of the invaded region (0
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), for the variation of the interfacial tension [6] with θ, we have:
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By derivation of Eq. (2), we get the interfacial tension gradient in the invaded region with surfactant given by the following equation:
	
[image: image7.wmf]θ,

sin

θ

cos

1

d

θ

d

σ

f

1

0

-

-

=

s

s


	(3)


where, the interfacial tension σ0 is constant in any point of the uncovered surface, while the interfacial difference 
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 arises only in the invaded region. It is evident that only σ1 and σ0, i.e. the minimum and the maximum values of the interfacial tension, can be experimentally measured.   

3. The hydrodynamic equations and the boundary conditions

The equations governing the flow inside and outside the drop are the continuity and Navier-Stokes equations [8- 10]. The continuity equations are

	div 
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where 
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is the velocity of the bulk L liquid and 
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’ is the velocity of the L’ liquid within the drop. 
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where p and p’ are the pressure outside and inside of the drop, 
[image: image16.wmf]r

m

n

=

 and 
[image: image17.wmf]r

m

n

'

'

=

 are the bulk and the drop kinematic and dynamic viscosities, respectively, considered constants.

The drop surface is considered a two dimensional, incompressible Newtonian fluid, so that the equation of the interface flow is [10]
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where 
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 is the interface velocity, 
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 is the external force acting on the drop surface, 
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are the tractions exerted by the outer and inner liquid on the drop interface, Г is the surface density, κ and ε are the surface dilatational and shear viscosity, respectively, and 
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 is the surface gradient operator. Because the surface density is very small (Г ≈ 10 -7g. cm -2) the inertial term can be neglected against the remainder terms.
In order to find the distributions of the velocities 
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and of the pressures p and p’, the system of equations (4)-(8) must be solved taking into account some appropriate boundary conditions [8, 9]. The velocities of the inner and outer liquid of the drop must satisfy the following conditions:

· the outer velocity must be zero far from the drop surface,
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· the normal component of the outer and the inner velocities must be zero on the surface of the drop
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· the tangential velocity components of the two liquids at the interface must be equals
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· the velocity 
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 within the drop must remain finite at all points, particularly at the centre of the drop ( r = 0 the origin of the coordinates).

Since the Marangoni flow on the surface of the drop (r = a) is symmetrical with respect to the Oz axis, the velocities of the inner and outer liquid flows are not functions of the angle φ, they will have only normal (radial) and tangential components.

The continuity equation (4) for the outer flow in spherical coordinates is
	
[image: image28.wmf]0

r

θ

ctg

v

r

2v

θ

v

r

1

r

v

θ

r

θ

r

=

+

+

¶

¶

+

¶

¶


	(9)


while, for the Navier-Stokes equation (6) we have
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and, similar equations for the inner liquid motion.

The velocities of the inner and outer flow satisfy the following boundary conditions
	v r =  v θ = 0   for r→ ∞
	(12)

	vr  =  
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	vθ = v
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In addition to these kinematics conditions we have also a dynamic condition on the drop surface (r = a), obtained from the interface flow equation (8), which for small interface density Г can be written in the following form [10]:
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4. The solution of the flow equations

 The solution of the flow equations (9-11) with the boundary conditions (12-16) can be obtained if we note that the surface flow gives rise to a current fluid directed to the drop along the Oz axis. This current arises as a consequence of the continual replacement, by a ventilation effect, of that liquid layer which was displaced by the interfacial flow. The profile of the flow indicates that o solution of the flow equations should be sought in the form [9, 15]
vr (r,θ) = f(r) cos θ,
vθ (r,θ) = g(r) sin θ,
p (r,θ) = μ h(r) cos θ,
 for the outer liquid L, and similarly Eqs., for the inner liquid L’.

After well-known manipulations (see for example [9]) we obtain for f, g, and h the following equations:
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with b1, b2, b3 and b4 as constants and equations of identical form for f’, g’ and h’ with constants 
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The eight unknown constants b will be determined from the boundary conditions (12-16). From (12) and (15) we have b3 = b4 = b
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and for the velocity and pressure distribution within the drop
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From (13) and (14) we have
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With these values, from equation (16), where for 
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 we have used equation (3), we have obtained the dependence of the constant b1 on the interfacial tension gradient σ0 – σ1 
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With the value of b1 the distribution of the velocity and pressure for the outer flow, in the interval 0 ≤ θ ≤θf ,  is given by 
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and, for the inner flow
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5. Pressure force Fp exerted on the drop
The resultant Fp of the pressure forces exerted by the bulk liquid on the drop, due to the symmetry of the problem is along the Oz axis and has the form [8]:
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where, ds is the surface element covered with surfactant, and prr, prθ  are the normal and tangential components of the viscous stress tensor [8,  9, 15]
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The surface element in spherical coordinates on the drop ( r = a) is
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so that the resultant forces acting on the drop can than be rewritten as
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From Eqs. (17) one obtains for the normal and tangential components (19-20) of the stress tensor, at the drop surface (r = a):
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Introducing the viscosities ratio λ=μ’/μ [14] and because 2κ/3aμ ≈ 0 [6], after integration, we have: 
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which is the resultant force Fp(θf) acting on the drop surface along the Oz axis. It can be seen that the resultant force depends on the θf angle, namely, on the extent to which the drop surface is covered with surfactant. It depends also on the radial interfacial tension gradient П, the ratio of the volume viscosities (λ) as well as of the radius (a) of the drop.

6. Surfactant surface coverage and its effects on the drop   
The equation (24) is represented in Fig. 2, where the abscise axis θf is given in radians and the ordinate axis F(θf) is given in dynes. The value of θf, for which Fp(θf) = 0, this means the value of  θf  for which the force F cancels, is noted by θ0 and its value in degrees is θ0 =680.53. This value of θ0 doesn’t depend on the physical chemistry and geometric properties of the drop. We can see that for
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 the force is positive, having the greatest value for  θm = 1200 (Fig 2).
	    
[image: image63.wmf]0

1

2

3

4

4

2

2

F

q

f

(

)

q

f

  


Fig. 2. The behavior of the pressure force Fp(θf) versus θf.
From Equation (24) it is found that for a coverage degree 
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of the drop, with  surfactant, as a result of the appearance of a radial interfacial tension gradient П, the pressure force Fp(θf) exerted by the external liquid upon the drop is oriented toward the negative direction of the Oz axis  (Figure 3a). This is similar with the application of a “hammer” nock on the drop in the injecting point of the surfactant. For a coverage degree θf greater than θ0, but less than 1800, the force Fp (θf) is oriented towards the positive direction of the Oz axis (Figure 3b). The propulsive (lifting) force Fp(θf)>0, responsible for the upward movement of the drop, appears only when the surface coverage of the drop with surfactant is greater than θ0.
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Figure 3. Pressure forces acting on the drop

a) Hammer effect   b) Propulsive force

In the following, we investigate the effects of different surface tension gradients in the first case
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. To point out the role of the surface tension gradients П, on the force Fp(θf) we introduce, from Equation (24), a new function 
	Φ(θ f ) =  П (1 − 2 cos θ f − 2 cos2 θ  f )
	(25)


The graphic representation of Equation (25) for various values of Π (0.5; 1; 2; 4; 5 dyn/cm) is given in figure 4. It is observed that for large surface tension gradients (4 dyn/cm and 5 dyn/cm) the “hammer” effect is also large. For low surface tension gradients (e.g. 0.5 dyn/cm; 1 dyn/cm; 2 dyn/cm), this hammer effect is small. This result is in good agreement with our previous work [4], where the main goal was to maintain the drop non-deformable using high viscosity liquids and small surface tension gradients (≈ 2.5 dyn/cm).  

	[image: image67.png]





Fig.4 The plot of Φ(θ f ) for  θf < θ0
An important observation is that the force Fp (θf) reaches its maximum value at the spreading moment of the surfactant (t=0) for which θf ≈ 0 and is given by 
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which represents the resultant force acting on the drop surface in the injecting point. For physical meanings, we take the absolute value of this force. 

Previously, we have shown that for low surface tension gradients and high drop viscosity, when the drop is not deformable, for θf ≤ θ0, no hammer effect is observable [4]. However, when the drop is deformable (i.e. for large surface tension gradients and low drop viscosity), for θf ≤ θ0, hammer effect was observable. The drop deformation is maxim at the spreading moment and after a short recorded time from 0.8 to 1.2 sec the drop takes its initial shape.
7. Concluding remarks.
For small surface tension gradients, even in the case of the drop not deformable, there are other movements, first of all, the surface waves. We suggest that these surface waves are produced by the hammer effect described above and illustrated in fig. 3. The surface waves generate a surface Marangoni instability of the drop. This instability was observed previously in the literature [11-14] but its cause was not discovered. Our theoretical model can describe the surface instability due to the hammer effect. Further on, these surface waves will produce the internal waves which are generated by the surface tension gradients through hammer impact. As a consequence, traveling periodic internal wave trains are generated in the liquid drop after the adsorption/spreading of the surface-active compound (fig. 5) on the surface of drop. 
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                                                    Fig.5. Internal wave trains   
Further more, two possibilities can occur for the hammer effect (θf ≤ θ0): 

1. The drop viscosity μ’ is large, then, the energy of the traveling periodic internal trains of waves are absorbed by the drop liquid and the drop is not deformable. Nevertheless, other movements might appear, like oscillations of the whole drop, rotations, etc.

2. The drop viscosity μ’ is small and the energy of the internal waves is not absorbed and they will be reflected by the internal drop surface. The superimposing of the direct internal waves with the reflected ones gives rise to a “resonant” effect, which generates the deformation and even fission of the drop. 

In the future work we will extend our theoretical model to the description of the deformation of a drop, as a consequence of the hammer effect due to the reduction of the drop interfacial tension.  
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Efectul Marangoni şi deformarea picăturii libere

Rezumat: Lucrarea introduce efectul de “ciocan” aplicat unei picături libere cînd se modifică tensiunea superficială a picăturii prin adsorbţia unui surfactant.
Cuvinte cheie: presiune hidrodinamică, gradient de tensiune    interfacială, picătură liberă .efectul Marangoni.
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