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A GENERAL METHOD FOR TREATING

A CERTAIN FLOW OF AN INVISCID FLUID

Part Two: An Extension to Some Special Cases

in Magneto-Plasma Dynamics

R. SELESCU*
Abstract: MHD models are extensively used in the analysis of magnetic fusion devices, industrial processing plasmas, and ionospheric/astrophysical plasmas. MHD is the extension of fluid dynamics to ionized gases, including the effects of electric and magnetic fields. So, the general method presented in the part one can be extended to some special (but usual) cases in magneto-plasma dynamics, considering an adiabatic but non-isentropic flow (taking into account the flow vorticity effects, as well as those of the associated Joule-Lenz heat losses) in an external magnetic field, obtaining new first integrability cases (similar to the “D. Bernoulli” ones): a) assuming a continuous medium; b) making no distinction between the intensity of the magnetic field and the magnetic induction of the medium (in the Gaussian system of units), since for all conducting fluids the magnetic permeability is approximately equal to 1 (see [1 - 3]); c) assuming that the value of the electric conductivity of the fluid medium is uniform and isotropic throughout and independent on the magnetic field intensity. There always are some space curves (Selescu) along which the vector equation of motion admits a first integral in the general case. In the particular case of a fluid having an infinite electric conductivity (the highly ionized plasma), these curves also are the isentropic lines of the flow, in both cases enabling the treatment of any 3-D flow as a “quasi-potential” 2-D one. Like the part one, this work also deals with the unsteady non-isentropic flows, giving a first integral for the equation of motion in the general case.

Keywords and phrases: non-isentropic flow of a barotropic inviscid electroconducting fluid in an external magnetic field, steady and unsteady flows, Lorentz’ force, Maxwell’s equations, non-relativistic form of Ohm’s law for a medium in motion, associated Joule-Lenz heat losses, second law of thermodynamics, generalized Crocco’s equation for magneto-gasdynamics, Selescu’s vector, Selescu’s space curves

1. Introduction, Nomenclature and the First Approach to the New Method


Analogously to the part one, in the magneto-plasma dynamics (by plasma understanding a mixture of neutral and excited atoms, ions, electrons and photons), the general form of the differential equation of motion for (not as usual) an adiabatic but non-isentropic flow of a barotropic (see the explanation in part one) inviscid electroconducting fluid in an external magnetic field, considering the flow vorticity Ω , is (see [1 - 10], for the right-hand side only):
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(for the left-hand side one usually writes: ∂V/∂t + (V()V ) , with: ( - nabla (the Hamilton’s operator) and  t - the time, binding the acceleration and the force density terms of a fluid particle, where (in case of quasi-neutral plasma, when the medium behaves itself in the first approximation like an uniform conducting fluid):
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 - plasma density, with:


[image: image3.wmf]-

+

+

=

m

m

m

a

 - the mass of a neutral atom; 
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 - the mass of the positive ion (considering a single species); 
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 - the mass of the electron; 
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 - plasma concentration in neutral atoms, and respectively (for a three component neutral plasma): 
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 - the concentration in positive and negative particles (a single species of ions and electrons; one can see that in this neutrality case, the plasma density is the same as for the non-ionized fluid: ρ = ρa );
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 - the velocity; 
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Ω = ((V = 2 ω (with ω - the instantaneous velocity of rotation of the little fluid particle);
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 - the pressure, resulted by totalizing of pressures of the three fluid components;
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 is the density of the volumic (as a rule pure electromagnetic) generalized Lorentz force, with:
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 - the density of electric charges in the considered fluid medium; c - the light speed in vacuum;
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 - the intensity of the local electric field in the proper (own) coordinate system (E - given by the Maxwell’s equations:    
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);

H - the intensity of the local magnetic field (as a rule variable in time; can be a periodical, even alternating quantity, but assumed to have a constant direction, varying the modulus only);
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 - the density of the conduction electric current (the second Maxwell’s equation:
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  ,   with   k = c/4π   ,   the terms   
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   - the densities of induction (displacement) and respectively convection electric currents - being neglected in the expression of the total current density:
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 - the non-relativistic form of Ohm’s law for a medium in motion, so having  jtot = j ),   where:  λ - the electric conductivity of the fluid.

Searching for a steady motion solution we have  
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  and for gases  f = 0 (mass force), H being considered an oscillating field, but reaching a damped state (constant in time).


In the non-relativistic theory (V << c), or for a neutral (ρe = 0), or an ideal (λ → ∞ ; 
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with   
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For a steady but isentropic motion (irrotational - Ω = 0 in an ideal fluid - λ → ∞) see [5], pp. 65 - 67 and [6], pp. 94 - 96, giving a “D. Bernoulli” integral for some very particular cases ( H ( V ; H || V - along the H vector lines ; H·V = const. ); also see [10 - 20].


A complete approach to the electromagnetic theory and the continuum mechanics presented from an unified point of view can be found, e.g., in [21].

2. Extension of the Method from the Part One to the Non-Isentropic Flows in MHD


Let multiply scalarly the last equation by a certain virtual elementary displacement vector dR :
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One can see that, besides the trivial cases of disappearance of both non-conservative terms:

1. 
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, meaning either Ω = j = 0 - an irrotational (potential) fluid field V, as
     well magnetic field H , or Ω || V and j || H - ( Ω = c1V  and  j = c2H - helicoidal fields);

2. 
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 meaning that all the vectors V, Ω, H and j are coplanar, also being
     satisfied the sense and modulus conditions for the vector products – a very particular case,

there also is an important case for which  
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  becomes zero:

3. dR coplanar with both the pairs (V and Ω) and (H and j); for all the considered special (but usual) cases, there are some lines (space curves) along which an elementary vector dR is coplanar with both the vectors V and Ω - contained in the tangent plane to the 0-work sheet of (Ω ( V) elementary force, and the vectors H and j - contained in the tangent plane to the 0-work sheet of the Lorentz force, being directed upon the intersection straight line of the two tangent planes above. Multiplying scalarly the last framed equation by such a virtual dR , disappearing the mixed products (Ω ( V)·dR and (H ( j)·dR , one gets successively (considering a barotropic gas and assuming an alternating external electromagnetic field):
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with:    
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where T is the period of H ( (t) - the instantaneous value of the incident magnetic field H.


This first integral is very similar to the “D. Bernoulli” one in the compressible steady aero-gasdynamics, the constant i0 being the flow total (fluido-electromagnetic) specific energy.


Let determine the analytic expression of the vector dR in order to satisfy the two coplanarity conditions for the vectors V, Ω, dR and H, j, dR respectively, and the differential equations of the intersection curves of the 0-work sheets for the (Ω ( V) force and for the Lorentz one.


In a given three-orthogonal coordinate system, say the Cartesian one, having the axes unit vectors kx, ky, kz , the analytic expressions of the vectors V, Ω, H and j are as follows:
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assuming all these quantities as being known (given) functions of the variables x, y and z.


The direction of the normal N1 to the 0-work sheet for (Ω ( V = 2 ω ( V) is given by this vector (an acceleration similar to the Coriolis complementary one), having the analytic expression:
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Analogously, the direction of the normal N2 to the 0-work sheet for the Lorentz force is given by the vector (j ( H) - acceleration of the Lorentz force, having the analytic expression:
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the equations of the current tangent planes to the 0-work surfaces for the force similar to the Coriolis complementary one and respectively for the Lorentz force being thus:
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The direction of the intersection straight line of the two current tangent planes above (upon which is directed the searched elementary vector dR ) is given by the vector
(N1 ( N2) :
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where:
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(with 
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are the director parameters of the searched direction, dR being therefore parallel to the vector

(Selescu)    $ = (Ω ( V) ( (j ( H)    - the vector product of two accelerations (elementary

forces), multiplied by cρ , the first one being similar to the Coriolis acceleration and the second one being given by the Lorentz force, $ representing a new physical quantity.


The differential equations of the intersection curves of the 0-work sheets of (Ω ( V) force with the 0-work sheets of Lorentz force, lines on which lies the searched dR || $, so that:
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 (the $ vector lines) are therefore:
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 (the “Selescu’s curves”, along which the vector equation of motion for an adiabatic but non-isentropic flow of a barotropic inviscid electroconducting fluid in an external magnetic field admits a first integral), these rigid lines being very similar to the “D. Bernoulli’s” rigid surfaces and lying on these ones.


Applying the second law of thermodynamics, one may write the heat transport equation:
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(the generalized Crocco’s equation for MHD).


In the right-hand side the first term is the dissipation heat due to the flow vorticity Ω = 2 ω .


The second term is the associated Joule-Lenz heat loss (dt being an elementary time) with:
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the first relation expressing the non-relativistic form of Ohm’s law for a medium in motion, 
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 being the values of j and E in the proper (own) coordinate system.


Taking into account that in the non-relativistic theory V << c, one can neglect the last term:
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with  
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  - an elementary vector directed parallel to the velocity V . The term containing dR also may be neglected.


It is interesting to remark that though H is an external field, inducing E and j , the associated Joule-Lenz heat (
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The third term represents the additional heat brought (introduced or extracted) to the fluid mass unit from the outside, due to thermal conductivity, radiation etc. and must be equal to zero (an adiabatic process).


So: 
[image: image51.wmf],

0

dt

ρ

1

d

)

(

d

)

(

ρ)

(

2

dt

ρ

1

d

)

(

TdS

¹

×

+

×

´

»

×

´

×

-

×

+

×

´

=

jE

R

V

Ω

R

H

j

jE

R

V

Ω

c


even if dR = Vdt, so that 
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Let now consider the particular case when the electroconducting fluid is an ideal gas, e.g. the highly ionized plasma (having an infinite electric conductivity, λ → ∞) - [2], p. 363, [6], pp. 91 - 92, 94 - 96.


From the non-relativistic form of Ohm’s law for a medium in motion, it results that the intensity of the electric field, 
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, must tend to zero, for having a finite density of the current, 
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So, in the arbitrary inertial system, the electric field E is determined by V and H :
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Let resume in detail the system formed by the equation of motion, the Maxwell’s ones, the physical one and the generalized Crocco’s (heat transport) one. According to the second Maxwell’s equation, the electric current density j has the expression:
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Neglecting (as it is often made in magneto-hydrodynamics) the density of the induction (displacement) electric current (the term 
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 ), one may write as previously:
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The density of electric charges 
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 is also expressed by V and H , as it follows:
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From this last formula one can see that 
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 is little for usual conditions.


In magneto-gas(hydro)dynamics, one generally neglects in the vector equation of motion the term 
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 (now just zero), which is small with respect to 
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In a medium (fluid) with an infinite electric conductivity one deducts from the Maxwell’s equations for the magnetic field of intensity H , the two following relations:
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to which is reduced, in this case ( λ → ∞ ), all the system of electrodynamic equations.


The second one of these two Maxwell’s equations express the law of conservation of the magnetic flux through any surface that moves together with the fluid, enabling the conception of magnetic lines of force “frozen in” the fluid to be introduced. Due to the fact that 
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 rigorously, the associated Joule-Lenz heat losses (
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For an adiabatic process 
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 , the increase in entropy being given by the vorticity Ω only, so that the vector equation of motion was reduced to:
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for an adiabatic non-isentropic (rotational) flow: dS ≠ 0.


In the particular case when dR is chosen to be parallel to the Selescu’s vector (tangent to the Selescu’s curves) $ = (Ω ( V) ( (j ( H) , this meaning an elementary displacement along the intersection line of the isentropic (D. Bernoulli’s) surface (containing the stream- and the vortex-lines passing through the considered point of the flow) with the 0-work sheet of the Lorentz force (containing the field lines of the vectors H and j passing through the same point), the entropy S remaining this time constant (S0) on this line (dS = 0), that is on the whole above rigid space curve one can write for the physical equation:
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the equation of motion becoming now:
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presenting itself like the previous equation of the potential motion (even if Ω ≠ 0 on the whole isentropic - Selescu’s curve) and also admitting a first integral (the energy equation):
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the “D. Bernoulli” integral for isoenergetic (adiabatic and steady) non-isentropic (rotational) flows, for an ideal gas (highly ionized plasma, λ → ∞) in MHD. In addition to this, one has to remark that in both the general and the particular λ → ∞ cases, the dR || $ choice above enables the treatment of any 3-D flow as a potential 2-D one, introducing a 2-D “velocity quasi-potential” Φi (M), specific to any “i” isentropic (or “D. Bernoulli’s”) surface on which these curves are lying.


But actually, the term ∂V/∂t in the left-hand side of the differential vector equation of motion can not disappear, because it is originating in the time-dependent term (H ( j)/cρ in the right-hand side of this equation, this fact being the essentials of the electromagnetic field (H may even have a time variable direction). Taking into account that on any “i” stream and vortex (V, Ω) surface (even if this is not an isentropic one, due to the Joule-Lenz heat losses) the velocity vector can be written as Vi = (Φi - see the part one (where, this time, the “velocity quasi-potential” Φi is a function depending not only on ξ and η, but also on t), after scalarly multiplying this equation by an elementary dR vector, integrating the term ∂((Φ)/∂t(dR , one gets the term ∂Φ/∂t , so that along the “Selescu’s curves” (these ones ceasing to be rigid, now becoming deformable in time) the first integral for an unsteady (∂V/∂t ( 0) and non-isentropic (Ω ( 0; 
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( 0) motion of a barotropic gas in an external magnetic field becomes:
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This first integral is very similar to the “D. Bernoulli-Lagrange” one in the compressible unsteady isentropic aerogasdynamics, i0 (t) being the flow total (fluido-electromagnetic) specific enthalpy.


It is to be noticed that the dR elementary displacement being not a real, but a virtual one, the works of the (Ω ( V) elementary force and of the Lorentz one, (H ( j)/cρ , made with this dR , are also virtual and generally ≠ 0 (being 0 for dR ( (V, Ω) and dR ( (H, j) only).

If in some points the vectors V, Ω, H and j are coplanar, the Selescu’s vector $ becomes 0 and the Selescu’s curves are locally interrupted - undefined direction in the (V, Ω, H, j) plane.

3. Conclusions


Taking into account the flow vorticity Ω effects as well as those of the associated Joule-Lenz heat losses and searching for a steady motion solution (∂V/∂t = 0), considering a barotropic gas, there are some space curves (Selescu) very similar to the “Bernoulli’s” rigid surfaces, curves along which the vector equation of motion admits in the general case a first integral (very similar to the “D. Bernoulli” one in the compressible steady aerogasdynamics), also making evident a new physical quantity - the Selescu’s vector: $ = (Ω ( V) ( (j ( H).


In the particular case of a fluid medium having an infinite electric conductivity and therefore without Joule-Lenz heat (λ → ∞ - the highly ionized plasma), these space curves also are the isentropic lines of the respective plasma flow, in both cases enabling the treatment of any 3-D flow as a potential 2-D one, introducing a 2-D “velocity quasi- potential” Φi (M), specific to any “i” isentropic surface on which these curves are lying.


For an unsteady (∂V/∂t ( 0) and non-isentropic (Ω ( 0 and 
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( 0) flow, writing Vi = (Φi on any “i” stream and vortex ( V, Ω ) surface, (where, this time, the “velocity quasi-potential” Φi is a scalar function depending on ξ, η and t), along the “Selescu’s curves” the first integral of the vector equation of motion of a barotropic gas in an external magnetic field is slightly different with respect to that for a steady and non-isentropic flow (appearing the additional term ∂Φ/∂t ), being very similar to the “D. Bernoulli-Lagrange” integral in the compressible unsteady isentropic aerogasdynamics.


This theory is useful especially for the cases when the terms Ω ( V and (H ( j)/cρ have comparable sizes, and can find many areas of interesting applications, among which we cite:

1. in the high-speed aerogasdynamics, to study the V, H fields around a hypersonic aircraft or a rocket subject to a strong magnetic field (with respect to the Earth’s one) in the ionized surrounding air, due to the high temperatures downstream the strong (detached) shock waves, these waves now becoming discontinuity surfaces also for the γ ratio of gas specific heats, this varying as the temperature increases (by jump);


2. in astrophysics, to study the flow around a spacecraft moving in the proximity of a star (including magnetar - a species of neutron star with an extremely strong magnetic field) or a gas giant planet, like Jupiter (a magnetic field 14 times stronger than the Earth’s one).
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O metodă generală de tratare a unei curgeri oarecare

a unui fluid nevâscos

Partea a II-a: O extindere la unele cazuri speciale

din magnetoplasmodinamică

Rezumat: Modelele MHD sunt larg folosite în analiza instalaţiilor de topire magnetică, a plasmelor de prelucrare industrială şi a plasmelor ionosferice/ astrofizice. MHD este o prelungire a dinamicii fluidelor la gazele ionizate, care include efectele câmpurilor electric şi magnetic. Aşadar, metoda generală din partea I poate fi extinsă la unele cazuri speciale (dar uzuale) din magnetoplasmo-dinamică, considerând o curgere adiabatică, dar neizentropică (ţinând seama de efectele vorticităţii curgerii, precum şi de cele ale pierderilor de căldură Joule-Lenz asociate) într-un câmp magnetic exterior, obţinând noi cazuri de primă integrabilitate (similare celor “D. Bernoulli”): a) presupunând un mediu continuu; b) nefăcând nici o deosebire între intensitatea câmpului magnetic şi inducţia magnetică a mediului (în sistemul de unităţi gaussian), întrucât pentru toate fluidele conductoare permeabilitatea magnetică este aproximativ egală cu 1 (v. [1 – 3]); c) admiţând că valoarea conductivităţii electrice a mediului fluid este egală şi izotropă peste tot şi independentă de intensitatea câmpului magnetic. Există totdeauna nişte curbe în spaţiu (Şelescu) în lungul cărora ecuaţia vectorială de mişcare admite o integrală primă în cazul general. În cazul particular al unui fluid ce are conductivitate electrică infinită (plasmă puternic ionizată), aceste curbe sunt şi liniile izentropice ale curgerii, în ambele cazuri permiţând tratarea oricărei curgeri 3-D ca pe una 2-D “cvasi-potenţială”. Ca şi partea I, această lucrare se ocupă şi de curgerile neizentropice nestaţionare, dându-se o integrală primă a ecuaţiei de mişcare, în cazul general.

Cuvinte şi fraze cheie: curgerea neizentropică a unui fluid electroconductor nevâscos barotrop într-un câmp magnetic exterior, curgeri staţionare şi nestaţionare, forţa Lorentz, ecuaţiile lui Maxwell, forma nerelativistă a legii lui Ohm pentru un mediu în mişcare, pierderile de căldură Joule-Lenz asociate, al doilea principiu al termodinamicii, ecuaţia lui Crocco generalizată pentru magnetogazodinamică, vectorul Şelescu, curbele în spaţiu ale lui Şelescu
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