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A QUATERNIONIC PROCEDURE IN THE STUDY OF THE KEPLERIAN RELATIVE ORBITAL MOTION
D.CONDURACHE*
V. MARTINUSI**
Abstract: The Keplerian relative orbital motion is studied by using quaternions, and a closed form solution is offered. This solution is based on a representation theorem given for the first time in 1995 in a tensorial form. The equations of relative motion with respect to an adequately chosen reference frame are obtained in a closed form.
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1.  Introduction
The paper offers a closed form solution to the Keplerian relative orbital motion by using quaternions. Relative orbital motion is of great importance for formation flying satellites – a concept for future space missions. Starting with the work of Clohessy – Wiltshire (see [1]) and Lawden (see [2]) in the early 60’s, the relative orbital motion knew many approaches: when the reference trajectory is circular or elliptic, when gravitational perturbations (Earth non-sphericity), solar pressure, thrust or atmospheric drag are taken into consideration.
The solutions offered by most authors are given by linearizing the equation of motion and by supposing that the relative distance remains small by comparison to the distance to the attraction center. We offer an exact solution to the relative orbital motion without any approximate methods.
This work is based on a result published for the first time in 1995 (see [4]). It relates the motion with respect to a rotating reference frame to the motion in an inertial reference frame by means of proper orthogonal tensorial functions. We give a similar quaternionic result in order to offer the solution to the Keplerian motion with respect to a non-inertial reference frame adequately chosen that has rotation and translation.
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2.  Problem Formulation

Two spacecrafts are orbiting around the same Keplerian attraction center, with the gravitational parameter
[image: image44.jpg]


. One of them is the reference body, named Chief, and the other one is the targeted body, named Deputy. Consider a reference frame originated in the mass center of the Chief, defined as:

· Ox axis has the direction of the position vector 
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 of the Chief;

· Oz axis has the direction of the angular momentum 
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h

 of the Chief;

· Oy axis completes a positive oriented base.

This reference frame is known as LVLH (local vertical local horizontal)

The goal of this paper is to determine the law of motion of the Deputy spacecraft with respect to the LVLH reference frame. This motion is described by the initial value problem:
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where 
[image: image5.wmf]ω

 denotes the instantaneous angular velocity of LVLH (it is supposed to be a differentiable function), 
[image: image6.wmf],

DD

rv

represent the relative position and the relative velocity of the Deputy with respect to LVLH.
3.  Quaternionic Considerations

The key of the quaternionic approach to Keplerian relative orbital motion is the Darboux equation expressed with quaternions: finding the unit quaternion that describes the rotation with a given arbitrary instantaneous angular velocity.
Theorem 1
Let 
[image: image7.wmf]ω

 be a continuous vectorial function. The quaternionic initial value problem:
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has a unique solution 
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q

, which is a unit quaternion.
The proof to this theorem may be found in [3], for example.

Remark 1
The unit quaternion 
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 which is solution to eq (2) models the rotation with angular velocity 
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. In case vector 
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 has constant direction, then the solution to eq (1) may be found explicitly as:
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4.  A Quaternionic Solution to Keplerian Relative Dynamics

We are now ready to offer the solution to eq (1). First, we will relate the motion with respect to a rotating reference frame to the motion with respect to an inertial reference frame. The next theorem is the quaternionic equivalent of the result from  [4].

Theorem 2
The solution to the initial value problem:
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is obtained by applying the quaternion operator:
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to the solution to the initial value problem:
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where 
[image: image17.wmf]ˆ

q

 is the solution to the Darboux equation (2).

Remark 2
The method offered by the previous theorem helps studying the Keplerian motion in a rotating reference frame: with the help of the inverse quaternion operator:
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the non-linear initial value problem (4) is transformed into a simpler one, that is eq (6). the classic inertial Kepler problem. The solution to eq (6) is transferred back in the rotating reference frame by the quaternionic operator defined in eq (5). Finally, the solution is expressed with respect to the rotating reference frame.
The proof to Theorem 2 may be done by direct computations.

The vectorial equivalent of Theorem 2 is:

Corollary 2
The solution to the initial value problem:
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is obtained by applying the tensorial proper orthogonal function 
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 to the solution to the initial value problem:
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where 
[image: image22.wmf]-

ω

R

is given by:
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We are now ready to offer the exact solution to the initial value problem (1). Its quaternionic equivalent is:
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Theorem 3
The solution to the initial value problem (11) is:
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where:

· 
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q

 is the solution to eq (2);

· 
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;

· 
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 is the Chief semilatus rectum and 
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 its trajectory eccentricity;

· 
[image: image30.wmf]0
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 is the position vector of the Chief with respect to an inertial reference frame originated in the attraction center at the initial moment of time 
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· 
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 is the solution to the initial value problem:
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· 
[image: image34.wmf]C

v

 is the absolute (inertial) velocity of the Chief.
The vectorial equivalent to Theorem 3 may be formulated as:

Corollary 3
The solution to the initial value problem (1) is:
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where 
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 has the explicit expression:
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(
[image: image39.wmf]C

f

denotes the Chief true anomaly) and 
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 is the solution to the initial value problem:
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By writing explicitly the vectorial solution (14) to the initial value problem (1) and taking into account eq (15), it follows that the closed form vectorial solution to the relative Keplerian orbital motion is:
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5.  Conclusions

The paper offered a quaternionic solution to Keplerian orbital relative dynamics. By using a quaternionic operator resulted from the Darboux equation, a closed form vectorial solution to the strong non-linear differential equation that models the relative motion was deduced. This solution generalizes the approximate approaches to relative spacecraft dynamics that are presented in the scientific specific literature. Direct applications to this solution are in relative spacecraft motion, orbital rendezvous and satellite formations.
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Rezumat: Mişcarea orbitală relativă kepleriană este studiată folosind quaternioni, o soluţie în formă închisă fiind obţinută. Această soluţie se bazează pe o teoremă de reprezentare dată pentru prima dată în 1995, în formă tensorială. Ecuaţiile mişcării relative în raport cu un reper ales în mod adecvat sunt date în formă închisă.
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