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REMARKS ON VOLTERRA’S PROBLEM
C. Marinescu*
Abstract. A solution for Volterra problem in the case when the domain is unit disk is given.
Keywords:Volterra,inside conjugate,holomorphic function.
1.Introduction.
The well-known Volterra problem was formulated as follow:
In the complex plane we consider a simply connected domain [image: image1.wmf]D

, bounded by a piecewise smooth curve [image: image2.wmf].
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The boundary of [image: image3.wmf]D
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This problem posed by V.Volterra in 1883 was intensively studied by H.Villat,V.Valcovici and A.Signorini who obtained its solution in the case when  [image: image15.wmf]D

 is a semiplan.

Further we shall present the condition of the solution in the case of disk.
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This property holds if and only if [image: image29.wmf]b
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The functions  [image: image32.wmf]b
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(in this order)   which  satisfy  the relation (1) are called inside conjugate. The formulas (1) show that the coefficients of the Fourier series of the functions [image: image33.wmf]b
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satisfy the relations deduced from the formulas
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The  series  were  imposed  for  holomorphic on a disk with boundary. On the  other  hand , there are decompositions of type (2)(Fourier) in other cases too. We can think that the continuity in the inside of the disk is everywhere valid. If the functions [image: image36.wmf]b
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, are inside conjugate then the complex function is given by
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Remarks:


1. For a function [image: image39.wmf]g
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not satisfying the inside conjugation conditions, the integral (3) defines a holomorphic complex function in the interior of    the  disk and other one in outside. When [image: image41.wmf]b
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where  the integral  operator [image: image46.wmf]H
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.  At the end of this paper we will also consider this operator acting on the case of functions defined on subintervals. We will introduce a notation proper to each situation.

2. Additional considerations.

Returning to  our  problem , let  [image: image49.wmf]S
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We remark that the functions [image: image63.wmf]b
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The  relation   of conjugation between [image: image71.wmf]a
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is defined  on  subintervals   too, and therefore we have 
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The problem was reduced to an integral equation; the determination [image: image78.wmf]of  the function  [image: image79.wmf]x

 from the second  integral equation (6) implies the determination of the function [image: image80.wmf]y
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-Asking only that the function be continuous on the boundary, the determination can be made also by other condition ( like in the case of Schwarz formula or Volterra problem).

Once again we return to the pose problem, we remark that to the functions [image: image95.wmf]b
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it is  known on the subintervals and associate the Fourier series of type (3).there have


	[image: image96.wmf]ò

ò

ò

+

=

=

-

v

u

I

I

n

ntdt

t

x

ntdt

t

ntdt

t

a

a

cos

)

(

2

1

cos

)

(

2

1

cos

)

(

1

p

a

p

p

p

p


[image: image97.wmf]ò

ò

ò

+

=

=

-

u

v

I

I

n

ntdt

t

ntdt

t

y

ntdt

t

b

a

sin

)

(

2

1

cos

)

(

2

1

sin

)

(

2

1

b

p

p

p

p

p


	


respectively
 

We deduce

	[image: image98.wmf]ò

ò

ò

ò

+

=

+

v

u

v

u

I

I

I

I

ntdt

t

ntdt

t

y

ntdt

t

x

ntdt

t

sin

)

(

sin

)

(

cos

)

(

cos

)

(

b

a


[image: image99.wmf]ò

ò

ò

ò

-

-

=

+

u

u

v

v

I

I

I

I

ntdt

t

ntdt

t

y

ntdt

t

x

ntdt

t

cos

)

(

cos

)

(

sin

)

(

sin

)

(

b

a


	


The last equalities are verified if we put
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Obviously, the relations [image: image104.wmf])
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By simple  calculation  we obtain
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Analogous, we have 
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defines  the required function.

Example. Let us consider the unit circle [image: image116.wmf]S
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The Volterra problem is to find the  function [image: image120.wmf])
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With these notations we have 
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Taking into account the expression of kernel and by integrating we obtain 
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We remark that the first series in the above expression of  [image: image136.wmf]ib
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and the second series is the Fourier series of function
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Finally we have 
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1In this case �it is holderien.  If a+ib isn’t holderien,the integral (3) must be decomposed on the intervals �.Ceraine, in this case will appear the singularitys on the border.
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