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Non-linear density variation effects on the fully developed mixed convection flow in a vertical channeL
T. GROŞAN*    I. POP(
Abstract: The effect of the quadratic term of density variation with temperature on the steady mixed convection flow in a vertical channel is investigated for laminar and fully developed flow regime .In the modelling of the heat transfer the viscous dissipation term was considered and temperatures of the walls are assumed constants.  The governing equations are expressed in non-dimensional form and are solved both analytically and numerically. It was found that there is a decrease in reversal flow with an increase in the mixed convection parameters.
Keywords: fully developed flow, mixed convection, viscous dissipation
1. Introduction


Heat transfer in channels occurs in many industrial processes and natural phenomena. It has therefore been the subject of many detailed, mostly numerical studies for different flow configurations. Most of the interest in this subject is due to its applications, for instance, in the design of cooling systems for electronic devices and in the field of solar energy collection. Some of the published papers, such as by Aung [1], Aung et al. [2], Aung and Worku [3, 4], Barletta [5, 6], and Boulama and Galanis [7], deal with the evaluation of the temperature and velocity profiles for the vertical parallel-flow fully developed regime. As is well known, heat exchangers technology involves convective flows in vertical channels. In most cases, these flows imply conditions of uniform heating of a channel, which can be modelled either by uniform wall temperature (UWT) or uniform heat flux (UHF) thermal boundary conditions. 


In the present paper, the effect of non-linear density variation on the steady mixed convection flow in a long vertical channel is investigated. It is assumed that the density variation is a combination of the linear and quadratic terms of temperature, see [8], that is
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where 
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 and 
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 are coefficients of thermal expansion, and 
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 is the reference temperature. 
The first term in this equation is the classical Boussinesq approximation, while the second term corresponds to water at 4oC. Under this assumption the governing equations are expressed in non-dimensional form and are solved both analytically and numerically. Graphs of the velocity and temperature profiles, which show the flow and heat transfer characteristics, are given. 
2. Basic equations

Consider a viscous and incompressible fluid, which steadily flows between two infinite vertical and parallel plane walls. At the entrance of the channel the fluid has an entrance velocity 
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 parallel to the vertical axis of the channel and the fluid temperature is 
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.The geometry of the problem, the boundary conditions, and the coordinate system are shown in Fig. 1. The variation of density with temperature is given by eq. (1) and fluid rises in the duct driven by buoyancy forces and initial velocity 
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. Hence, the flow is due to difference in temperature and in the pressure gradient. The flow being fully developed the following relations apply here 
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 and using the continuity equation gives one can  conclude that 
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 and 
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 does not depend on
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. Under these assumptions the momentum and energy equations for the flow and heat transfer are: 
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subject to the boundary conditions
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The closure of the system (2) – (3) subject to the boundary conditions (4) is given by the mass flux conservation equation,
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In order to solve equations (2) and (3), we introduce the following non-dimensional variables
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where 
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 is the Reynolds number. Using (4) in (2) and (3) we obtain:
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where 
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 in equation (7) should be constant and where
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is the Brinkman number, see [9], Pr and Ec being Prandtl and Eckert numbers and 
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are the mixed convection parameter and the modified mixed convection parameter.


Fig. 1. Geometry of the problem and co-ordinate system
Equations (7) and (8) are subject to the boundary conditions (4), which become in dimensionless form
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(11)
and the conservation mass flux relation (5) takes the form
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The physical quantities of interest in this problem are the skin friction coefficients and the Nusselt numbers which are defined as
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Using (6) and (13), we obtain the dimensionless form of eqs. (13):
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We mention that if the modified mixed parameter and the Brinkman number are zeros (i.e. 
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) equations (7), (8) and (11) reduce to those obtained in [4] and it is possible to obtain an analytical solution.
3. Results and discussions

Eqs. (7) and (8) subject to (11) and (12) were solved numerically for different values of the parameters  
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, 
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 and Br (
[image: image35.wmf]l

= 0, 100, 250, 500, 1000; 
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= -75, -50, -20, 0, 20, 50, 75; Br = 0, 0.0001, 0.001, 0.01, 0.025) using an implicit finite-difference method. Dimensionless velocity , U(Y), and temperature profiles, 
[image: image37.wmf](

)

Y

q

, are presented in Fig. 2. for different values of the modified mixed convection parameter 
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. We notice an increase of the reversal flow and an increase of the thickness of the temperature profile with the increasing of the modified mixed convection parameter, 
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. The analytical solution (
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= 0, Br = 0) is also present on the figure having the circle marker. An increase of the reversal flow and the temperature profiles with the increase of the mixed convection parameter, 
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, is also observed(see Fig. 2).
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Fig. 2. Velocity profiles, U(Y), and temperature profiles, 
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(Y), for different values of the modified mixed convection parameter, 
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Fig.3. presents the variations with the mixed convection parameter, 
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, of the velocity and temperature profiles and one can see the increasing of the profiles with the increasing of 
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. In Fig. 4. are shown variations of velocity and temperature profile in respect with the Brinkmann number. It was found that the thickness of the temperature profiles increases with the increases of the Brinkmann number and a shifted in the velocity profile is observed. 
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Fig. 3. Velocity profiles, U(Y), and temperature profiles, 
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(Y), for different values of the mixed convection parameter
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Fig. 4. Velocity profiles, U(Y), and temperature profiles, 
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(Y), for different values of the 
Brinkmann number, Br
Table 1. Values related to the skin friction and heat transfer coefficients
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	0
	0.001
	-20
	7.150119
	-4.663994
	0.507136
	0.494866

	
	
	0
	5.988023
	-5.988023
	0.505988
	0.494059

	
	
	20
	4.825683
	-7.312491
	0.505135
	0.492927

	
	0.01
	-20
	7.167453
	-4.671451
	0.571448
	0.448712

	
	
	0
	5.988023
	-5.988023
	0.559880
	0.440596

	
	
	20
	4.806029
	-7.308998
	0.551302
	0.429180

	250
	0.001
	-20
	-3.244979
	-14.993563
	0.507138
	0.478756

	
	
	0
	-4.420859
	-16.311821
	0.508537
	0.475318

	
	
	20
	-5.600468
	-17.628390
	0.510240
	0.471553

	
	0.01
	-20
	-3.597421
	-14.766601
	0.574330
	0.288196

	
	
	0
	-4.919115
	-16.015325
	0.590363
	0.253686

	
	
	20
	-6.281039
	-17.241213
	0.610385
	0.215926

	500
	0.001
	-20
	-13.829168
	-25.172775
	0.529254
	0.441558

	
	
	0
	-15.044713
	-26.463966
	0.533317
	0.435530

	
	
	20
	-16.267510
	-27.751065
	0.537709
	0.429181

	
	0.01
	-20
	-16.155457
	-23.097989
	0.836705
	-0.052668

	
	
	0
	-17.852174
	-23.972208
	0.890979
	-0.105065

	
	
	20
	-19.616229
	-24.772912
	0.951353
	-0.158654


Numerical values related to the skin friction coefficient and of the Nusselt number on both walls are presented in Table 1 for different values of mixed and modified mixed convection parameters and Brikmann number. The skin friction coefficient decreases with the increasing of all considered parameters on the left wall, while on the right wall the skin friction coefficient increases with the increasing of the Brinkmann number. We have to remark that for small values of the mixed convection parameter the reverse flow is not present and thus the values of the skin friction parameter on the left wall is positive. The Nusselt number increases, while on the right wall decreases, with the increasing of the all considered parameters when the reverse flow is present. For 
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 (i.e. reverse flow is not present) on the left wall the Nusselt number decreases with the increasing of the modified mixed convection parameter. We mention that for large values of the mixed convection parameter and Brinkmann number the Nusselt number on the right wall is positive, i.e. the fluid is hotter than the right wall.
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Efectele variŢiei NELINIARE A DENSITAŢII ASUPRA CONVECŢIEI MIXTE ÎNTR-UN CANAL VERTICAL 

Rezumat: Se studiază efectul termenului pătratic al variaţiei densităţii cu temperatura în curgerea staţionară convectivă mixtă într-un canal vertical în regim laminar, curgerea fiind total dezvoltată. În modelarea transferului de căldură se ţine cont de disipaţia vâscoasă, iar pereţii canalului sunt consideraţi ca având temperaturi constante. Ecuaţiile care modelează fenomenul sunt adimensionalizate şi sunt rezolvate atât analitic cât şi numeric. S-a observat o descreştere a curgerii reverse cu creşterea valorii parametrilor convecţiei mixte.

Cuvinte cheie: curgere total dezvoltată, convecţie mixtă, disipaţie vâscoasă
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