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Abstract: In this paper we present a dynamical study of a nonlinear oscillator. It is obtained a nonlinear differential equation which describes the motion and we find the velocity of the particle as a function of its position. 
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We consider a mechanical oscillator containing a mass particle which is connected by two linear elastic springs.  The particle can oscillate on the perpendicular direction upon the line of the springs, in a horizontal plane. These springs are fixed at their second extremity; they are identical and collinear in the undeformed state (figure 1.a). We also consider that the springs have the same elastic constant and the same length in the undeformed state. It is considered a OXY system with the origin in the fixed extremity of the first spring; the OX axis coincides with the line of the two springs in undeformed state.
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Figure 1: Nonlinear oscillator with one degree of freedom
We make the following notations (figure 1.a and 1.b):
A – the fixed extremity of the second spring

P – the point particle (oscillator)

P0 – the position of static equilibrium of the particle

m – the mass of the point particle

l0 – the length of the springs in undeformed state

k – the elastic constant of the springs

(Δ) – the trajectory of the point particle
We have that 
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 and we impose to the trajectory (Δ) of the particle to be rectilinear and perpendicular to the OX axis.
If the point particle P is taken out from the position of static equilibrium, this will execute free oscillations. In our hypotheses the damping and the friction between the oscillator and the trajectory (Δ) are negligible, hence the forces which drive on the particle are only the elastic forces Fe1 and Fe2 (figure 1.b).
If we denote by y the second cartesian coordinate of the point P we can write
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In what follows we will make the dynamical study using polar coordinates. Let us consider 
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, the first polar coordinate and 
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the angle between OX axis and OP, the second polar coordinate.

If  
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  is the acceleration of the particle we can write the dynamical equation
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Using the projection on the two axes we obtain 
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and also
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In this context we have 
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From (1) and (2) it results 
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and further
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We impose the condition 
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Let us observe that  
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If  the point  P belongs to the trajectory  
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.  Making the derivative of the relation 
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depending  on time, we obtain
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Replacing 
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  in  (4) it follows the equation 
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The equation (5) is equivalent by the following
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Let us remark that replacing 
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and  
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 in equation (3) we again obtain the equation (6).
For solving equation (6) we make the notation  
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In (7) we consider all functions depending on 
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and we make the derivative of this relation :
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On the other hand  we can calculate 
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 as follows 
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From (8) and (9) we obtain
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In this moment we use (7) and (10), therefore  the equation (6) becomes:
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Equation (11) is a linear differential equation of first order and has the solution:
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where 
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 is an integration constant.

We  have  that 
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 and we also impose  the initial condition
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hence we  obtain the value of the integration constant as:
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Using relations  (12) and (13) it results
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and equivalently
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Consequently, we can write the velocity of the particle  P as function of  angle 
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. From the relation 
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we obtain  that 
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and finally that
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Note that in the particular case 
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STUDIU DINAMIC AL UNUI OSCILATOR NELINIAR CU UN GRAD DE LIBERTATE

Rezumat: În lucrare se prezintă studiul dinamic al unui oscilator neliniar. Se obţine o ecuaţie diferenţială neliniară care descrie mişcarea şi se exprimă viteza particulei ca funcţie de poziţia acesteia.
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