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A GENERALIZED SOLUTION IN ORBITAL RELATIVE MOTION IN A CENTRAL FORCE FIELD
D.CONDURACHE*
V. MARTINUSI**
Abstract: The paper presents a generalized solution in orbital relative motion under the influence of a central force field. This solution generalizes those of Clohessy-Wiltshire and Lawden for keplerian trajectories. The results are given in a vectorial closed form, so they do not depend on a particular coordinate system.

Keywords: relative spacecraft motion, central force field.
1.

Introduction
The paper presents a tensorial solution to the relative orbital motion in a central force field problem. The problem refers to the motion of a body (named Deputy) with respect to a reference frame associated to another body (Chief), both moving under the influence of the same central force field. 
[image: image71.jpg]The motion of the Deputy is related to a reference frame that has one axis with the same orientation as the position vector of the Chief with respect to the attraction center, another axis with the same direction as the Chief angular momentum and the third axis completes a positive oriented Cartesian reference frame (see Fig. 1). This non-inertial reference frame will be named LVLH (Local Vertical Local Horizontal).

Figure 1
The problem of the relative orbital motion in a central force field applies in relative orbital dynamics under the influence of the gravity, and all that is implied by this: relative satellite motion, satellite constellations and satellite formation flight. It also models the relative motion of satellites under the influence of some perturbation factors, like the Earth non-sphericity harmonics.

The mathematical model of the relative orbital motion in a central force field is the initial value problem:

	
[image: image73.jpg]
	(1)


where g is a continuous real valued function that models the central force field, 
[image: image2.wmf]ω

 is the angular velocity of the LVLH reference frame (it is supposed to be a differentiable vectorial function), 
[image: image3.wmf]C

r

 is the position vector of the Chief with respect to an inertial frame originated in the attraction center, 
[image: image4.wmf], 

DD

rv

 are the initial relative position respectively the initial relative velocity of the Deputy with respect to LVLH and 
[image: image5.wmf]0

t

 is the initial moment of time.
In Cartesian coordinates, eq (1) is written as:
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where 
[image: image7.wmf]C
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 is the angle between 
[image: image8.wmf]0
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 (the position vector of the Chief at 
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tt

=

) and 
[image: image10.wmf]C

r

, and 
[image: image11.wmf]C

h

 is the constant angular momentum of the Chief.
2.

Tensorial Considerations

We will introduce the main instrument that helps solve the initial value problem (1). The key is the Darboux equation: determining the orthogonal proper tensorial function that models the rotation with a given continuous instantaneous angular velocity 
[image: image12.wmf]-

ω

. The skew-symmetric tensorial function associated to 
[image: image13.wmf]ω

 will be denoted 
[image: image14.wmf]ω

%

.
Theorem 1 (Darboux)  The solution to the initial value problem:
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has a unique solution Q that is an orthogonal proper tensor.
The solution to the initial value problem (3) will be denoted 
[image: image16.wmf]-

ω

R

. This tensorial function models the rotation with angular velocity 
[image: image17.wmf]-

ω

. a proof to Theorem 1 may be found in [1].

Remark 1
The Darboux equation (3) has explicit solution in some particular cases. When the tensorial function 
[image: image18.wmf]ω

 has a constant direction, for example, the explicit solution to eq (3) is:
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In our case, 
[image: image20.wmf]ω

 represents the instantaneous angular velocity of LVLH frame, and since the motion is done in a central force field, its direction remains constant. 
The main result of this paper offers the solution to the motion in a central force field problem with respect to a rotating reference frame. 
Theorem 2
The solution to the initial value problem:
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is obtained by applying the tensorial function 
[image: image22.wmf]-

ω

R

 to the solution to the initial value problem:
	
[image: image23.wmf](

)

(

)

(

)

(

)

000000

, 

, 

gr

ttt

+=

==+´

rr0

rrrvr

&&

&

w


	(6)


[image: image72.jpg]The previous result is a representation theorem for the motion in a central force field with respect to an arbitrary rotating reference frame. It also offers a method for solving the non-linear initial value problem that models such motion: with the help of the inverse of tensor 
[image: image24.wmf]-
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, eq (5) is “transported” in an inertial reference frame, where it becomes exactly eq (6). After solving eq (6), the solution is “transported” back into the rotating reference frame, with the help of tensor 
[image: image25.wmf]-
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. The final result is expressed with respect to the rotating non-inertial reference frame. The inertial frame that appears and then vanishes in this approach plays only a catalyst role. This procedure is similar to the Laplace and Fourier transforms in the case of the scalar differential equations.
We are now ready to give the solution to the relative motion in a central force field problem. One may remark that this is in fact a motion of a particle with respect to a non-inertial reference frame that has a motion composed by:
· a translation along a plane trajectory (that represents the trajectory of the Chief with respect to an inertial reference frame originated in the attraction center);

· a rotation with a fixed direction instantaneous angular velocity (its direction is the same as the Chief angular momentum).

3. Relative Orbital Motion in a Central Force Field

3.1. Exact Closed Form Solution
With the help of Theorems 1 and 2, we will offer the solution to the relative motion in a central force field.
Theorem 3
The solution to the initial value problem:
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is:
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where 
[image: image28.wmf]D
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 is the solution to the initial value problem:
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and 
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The proof to Theorem 3 may be done by direct computations.
Remark 2
The solution (7) to eq (*) represents the relative law of motion of a particle with respect to a non-inertial reference frame originated in another particle, both of them moving under the influence of the same central force field that is described by the force law:
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with m representing the mass of the particle, g a continuous real function and r the position vector of the particle.
Remark 3
The solution (7) generalizes the solution to the relative orbital motion in a gravitational field (such as the relative motion of two satellites). In this case, the function g has the particular expression: 
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 is the gravitational parameter of the attraction center.
3.2. Prime Integrals

By using Theorem 2, we are able to determine the prime integrals of the motion in a central force field with respect to a rotating reference frame. This motion is described by eq (5).
Theorem 4
The prime integrals of eq (5) are:
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(similar to angular momentum conservation);
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(similar to the energy conservation), where 
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Proof

One may remark by direct computation that 
[image: image37.wmf]+´=

ΩωΩ0
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. By using the properties of the tensorial function 
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 (see [1]), it follows that the vectorial function 
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 may be expressed as the rotation with angular velocity 
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 of a constant vector, that is 
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Eq (11) results by direct computation.
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Remark 4
The vectorial function 
[image: image43.wmf]Ω

 introduced in eq (10) is similar to the (constant) angular momentum of the motion in a central force field with respect to an inertial reference frame. In case the reference frame has a rotation with an arbitrary instantaneous angular velocity 
[image: image44.wmf]ω

, this clone of the angular momentum is a vector that is obtained by rotating a constant vector 
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Remark 5
The function:
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represents the generalized specific potential energy. In case 
[image: image48.wmf]ω

 is constant, V represents the classic potential energy (see [1]).
3.3. Geometric Visualization of the Relative Orbital Motion
in a Central Force Field

The solution (7) of the initial value problem (1) allows offering a very suggestive geometric visualization of the relative orbital motion in a central force field. The motion may be seen as:
· a planar motion (similar to the inertial motion in a central force field) in a variable plane 
[image: image49.wmf](
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· a rotation with instantaneous angular velocity 
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 of plane 
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· a rectilinear translation of plane 
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; this translation is described by 
[image: image53.wmf]C
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, the magnitude of the position vector of the Chief with respect to an inertial reference frame originated in the attraction center.

4. Keplerian Relative Orbital Motion

This Section particularizes the results from the previous sections: the central force field is the gravitational field of an attraction center, described by a gravitational parameter
[image: image54.wmf]0

m

>

. The next Theorem offers the exact closed form solution to the Keplerian relative motion. It is a particularization of Theorem 3.
Theorem 5
The solution to the Keplerian relative motion, described by the initial value problem:
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is:
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where 
[image: image57.wmf]D
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 is the solution to the initial value problem:
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and 
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Remark 6
The vectorial function 
[image: image60.wmf]ω

 represents, in this particular case, the derivative of true anomaly of the inertial Chief trajectory with respect to time. Considering the true anomaly of the Chief at the initial moment of time 
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Also, the explicit expression of the tensorial function 
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 becomes:
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Remark 7
The vectorial function 
[image: image66.wmf]C
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, expressed with respect to the LVLH frame, is:
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where 
[image: image68.wmf]C

p

 is the semilatus rectum of the Chief trajectory and 
[image: image69.wmf]C
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 its eccentricity. It follows that the solution to the Keplerian relative motion may be written as:
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5. Conclusions

The paper offered a complete solution to the orbital relative motion in a central force field. The main instrument that allowed obtaining this solution consists in proper orthogonal and skew-symmetric tensors. The explicit solution to the Darboux equation in case the instantaneous angular velocity has constant direction was also essential.
The applications to these results are immediate: relative motion of satellites. The paper offered the solution to the Keplerian relative orbital motion in a vectorial closed form. This solution generalizes previous approaches to the relative orbital motion problem.
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Rezumat: Lucrarea prezintă o soluţie generalizată a mişcării orbitale relative în câmp central. Această soluţie generalizează soluţiile oferite de Clohessy-Wiltshire şi Lawden în cazul traiectoriilor kepleriene. Rezultatele sunt date în formă vectorială închisă, deci nu depind de alegerea în particular a unui sistem de coordonate
Cuvinte cheie: mişcare orbitală relativă, câmp de forţe centrale.




































Figure 3



Figure 2



BULLETIN OF THE TRANSILVANIA UNIVERSITY OF BRAŞOV









*, ** Dept. of Theoretical Mechanics, Technical University “Gh. Asachi” Iasi, ROMANIA.



_1224610665.unknown

_1224614955.unknown

_1224617398.unknown

_1224617646.unknown

_1224618062.unknown

_1224659616.unknown

_1224660353.unknown

_1224660299.unknown

_1224660336.unknown

_1224618141.unknown

_1224659443.unknown

_1224618110.unknown

_1224618123.unknown

_1224618092.unknown

_1224617895.unknown

_1224617943.unknown

_1224618031.unknown

_1224618039.unknown

_1224617944.unknown

_1224618029.unknown

_1224617916.unknown

_1224617719.unknown

_1224617801.unknown

_1224617860.unknown

_1224617735.unknown

_1224617435.unknown

_1224616762.unknown

_1224617152.unknown

_1224617273.unknown

_1224617287.unknown

_1224616890.unknown

_1224615833.unknown

_1224615939.unknown

_1224616681.unknown

_1224616714.unknown

_1224616439.unknown

_1224616566.unknown

_1224615864.unknown

_1224615157.unknown

_1224615198.unknown

_1224615199.unknown

_1224615825.unknown

_1224615161.unknown

_1224615085.unknown

_1224615150.unknown

_1224615004.unknown

_1224612970.unknown

_1224614399.unknown

_1224614520.unknown

_1224614744.unknown

_1224614914.unknown

_1224614522.unknown

_1224614538.unknown

_1224614403.unknown

_1224614008.unknown

_1224614082.unknown

_1224614356.unknown

_1224614379.unknown

_1224614259.unknown

_1224614057.unknown

_1224613030.unknown

_1224613131.unknown

_1224613024.unknown

_1224613029.unknown

_1224613000.unknown

_1224612256.unknown

_1224612616.unknown

_1224612924.unknown

_1224612949.unknown

_1224612276.unknown

_1224612022.unknown

_1224612064.unknown

_1224612076.unknown

_1224611910.unknown

_1224609630.unknown

_1224610072.unknown

_1224610503.unknown

_1224610576.unknown

_1224610610.unknown

_1224610638.unknown

_1224610564.unknown

_1224610093.unknown

_1224610296.unknown

_1224610075.unknown

_1224609938.unknown

_1224610026.unknown

_1224609911.unknown

_1224609766.unknown

_1224609805.unknown

_1224609885.unknown

_1224609792.unknown

_1224609632.unknown

_1224589993.unknown

_1224590085.unknown

_1224590137.unknown

_1224590164.unknown

_1224590104.unknown

_1224590065.unknown

_1224589593.unknown

_1224589723.unknown

_1224589780.unknown

_1224589673.unknown

_1224589352.unknown

