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Abstract: Present paper presents a model for atomized non-evaporating 

liquid spray injected in diesel engine. The method consists of a fully 

interacting combination of Eulerian fluid and Lagrangian particle 

calculation. 
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1. Introduction 

 

In this paper, we are interested in 

problems, such as high-pressure fuel 
injection in an internal combustion 

engine, in which the spray carries 

sufficient momentum to entrain and set 
into motion the surrounding gas. In turn, 

the motion of the gas in the vicinity of 

the particles reduces the resistance to 
their motion and allows the spray to 

penetrate much further than would 

otherwise be the case. It is important, 

therefore, to account for the interaction 
between the particles and the gas. This 

interaction is of course always present, 

but it is particularly significant whenever 
the total mass and momentum of the 

particles is comparable to that of the gas, 

and when the size of the particles is 
sufficiently small so that the coupling of 

a particle to the gas is strong.  

The procedure is to represent the spray 

by discrete particles, rather than by 
continuous distributions. This amounts to 

a statistical (Monte Carlo) formulation of 

the problem, since the finite number of 
particles used represents a sample of the 

total population of particles. 

Each computational particle is 

considered to represent a group of 

particles possessing the same 

characteristics such as size, composition, 
etc. 

The use of discrete particles eliminates 

the problems of numerical diffusion and 
of resolution in the vicinity of the injector. 

 

2. Application Description 

 

It will be assumed that no particle 

coalescence or particle breakup occurs. 

This implies that the particles are 
sufficiently dispersed that particle 

collisions are infrequent. The initial 

breakup of liquid sprays or jets is not 
considered It is assumed that initial 

conditions for the particles are known. 

That is, the initial particle size 
distributions, positions, and velocities are 

independently specified. 

This leads to two sets of equations, one 

set for the gas and the other for the 
particles. These equations will be coupled 

primarily by two mechanisms, the 

displacement of gas by the volume 
occupied by the particles and momentum 

interchange between particles and the gas. 

Because the particles are nonevaporating 
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and nonburning, there is no mass 
exchange. Further, we assume that the gas 

or fluid containing the particles is 

compressible. 
Spary equations: 
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where ppp R,F,u and pT  is the velocity, 

force, rate of radius variation and the 

temperature of an arbitrary droplet in the 

spray at x  position. ppp dxdTdvfdr is the 

probably number of droplets at x  position, 

in the space xd , with ppp R,F,u  and Q&  is 

f rate of change, made by collision, and 
coalescention.  

 Continuity equation for the gas: 
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where θ  is the void fraction, or the 

fraction of the volume occupied by the 

gas, and gu is the gas velocity. The 

presence of the void fraction in this 

equation accounts for the displacement 
effect of the particles. 

 Momentum equation: 
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where g is the acceleration of gravity, p is 

the pressure, gµ is the kinematic viscosity 

(or eddy viscosity if the flow is turbulent), 

and Mp is the term defining momentum 

exchange with the particles, per unit 
volume. An alternative form of this 

equation can be obtained by subtracting 
out the continuity equation: 
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This is the form of the equation used. 

The terms containing pM , will be defined 

later.  

In a turbulent flow, the gas equations of 

the previous section are written in terms 

of the mean velocity gu . For particles, gas 

turbulence is important as a mechanism 
for diffusion; and it is convenient to write 

the instantaneous, rather than averaged, 

equations for the particles. To do this, we 
define the instantaneous gas velocity, 

'
ggg uuU += , where 

'
gu , is the turbulent 

component of the gas velocity.  
Each particle, individually labeled by 

subscript k, is assumed to obey the 

following equations:  
 Particle velocity: 

 

dtdxu pkpk /=  (5) 

 

 Particle momentum equation: 
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where xpk is the particle position, pku  is 

its velocity, mk is its mass, and kρ  is its 

density. The notation ]U[D gk is used to 

denote the drag function, evaluated using 

the velocity gU , which is the coefficient in 

the force acting on the particle due to its 

motion through the gas. It will be 
convenient to abbreviate the notation to 
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Dk when referring to the drag function 
evaluated at the mean gas velocity 

gu (Dk ≡ Dk[ug]).  

It is sometimes more convenient to 

consider the effect of turbulence on the 
particles to be due to a force fpk, in 

which case the momentum equation is 

written:  
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The terms in the gas equations (eqs. 2 - 

4) dependent on the particles have not yet 
been defined. Taking ensemble averages, 

we can write: 
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Fig. 1. Typical cells. 
 

 Velocities are defined in the middle of 
cell faces. Thus, there are two staggered 
meshes associated with the respective 
velocity components, and the 

corresponding cells, called momentum 
cells, are indicated by dashed lines in 
Fig. 1. 

These computational cells act as control 
volumes for the dependent variables 
associated with the basic equations. The 
regular cells are the control volumes for 
the mass continuity equation. Variables 
associated with them are the pressure and 
the void fraction. The momentum cells are 
the control volumes for the momentum 
equations, and the associated variables are 
ug,ij and vg,ij and the components of the 
pressure gradient ∆ p. To a first 
approximation, these variables are 
assumed to be constant within their 
respective cells.  

We shall also use a time-splitting 
procedure employing intermediate time 
levels denoted by superscripts such that: 
 

132 +<<<< nTTTn ttttt  (11) 

 
 For modeling purposes, it is not possible 
to deal with the large number of droplets, 
so that a sampling technique be employed 
in which each single particle represents a 
characteristic group of particles. This is 
equivalent to the following distributions 
function: 
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where pkN  is the number of identical 

particle by particle k, N∆  is the number of 

particles in the volume puxr ∆∆∆ . 

 The droplet size distribution is:  
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where 32D  is Sauter mean diameter which 

is consider to varying very little. 
Eddy viscosity was estimated using a 

value appropriate to a turbulent gaseous 
jet:  
 

 22
25.00161.0 Vdg π=µ , (14) 

 
where d is the orifice diameter and V is 
the droplet injection velocity. 
 No attempt was made to calculate 
particle diffusion accurately. Particle 
turbulence was modeled using the 
assumption, that the fluid turbulence is 
isotropic and has a Gaussian distribution 
in velocity. Given the turbulent kinetic 

energy k, is gg uuk 1.0= , and turbulent 

velocity is:  
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where, as before, X and Y are random 
variables selected for a uniform 
distribution in the range -1 < X, Y < 1. To 
complete the description, the relevant 

turbulence time scale τ  is required. The 

velocity '
gu  is assumed to act for a time 

equal to t∆τ = . An elementary analysis 

suggests that the produces particle 
diffusion corresponding to: 
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The resulting particle concentration, 

which is Gaussian, forms a distribution 
function for the location of the particle. 
Particle positions are randomly selected 
from within this distribution, such that on 
each time step the diffusional increment in 
particle position is 
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This is equivalent to selecting the 
following random particle force on each 

time step 
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Each particle injected or entering the 

mesh must be assigned a velocity pku , a 

radius rk, and the number of particles in 

the group pkN . Let the number of 

computational particles injected per cell 

per time step be K. The radius of each 

particle is then chosen from a uniform 
random distribution that verified the 

relation.  
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If the pressure drop across the nozzle is 
known, then 
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The transverse velocity is derived in 

terms of the initial spray angle using the 

relationship tpktpk )u(Max)u(0 ≤<  where  
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Knowing the position of each particle at 

time 1nt +  the void fraction is calculated 

using Eq. 9 where the summation is over 
all particles in regular cell (ij) and Vij is 

the volume of that cell. The void fraction 

is assumed to be centered in the cell; 
values at cell faces are obtained by linear 

interpolation. For each regular cell the 

void fraction is:  
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the continuity equation 
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The equations that have to be solved 
next, simultaneously, are the gas and 

particle momentum equations over the 

momentum cell 

 

TTn
g

T
n

p

n

g

n

n
g

n
g

RSutS
x

p
g

x

p
gF

t

uu

2212
1

11

1

1

+−∆














∂

∂

ρ
−+

+
∂

∂

ρ
−=+

∆

−

+
+

++

 (25) 

 
We shall employ a splitting procedure, 

which, while preserving the original 

equations, will solve them in a number of 
stages.  
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We first calculate intermediate gas and 

particle velocities, accounting explicitly 
for all forces, except for particle 

interactions and turbulence, using the 

equations (27). Application of the present 

technique has been the modeling of fuel 
injection sprays. It would be desirable to 

compute sprays for which experimental 

data are available so that a direct 
comparison could be made. 
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The experiments of Hiroyasu and Kadota 

[3] come closest to providing such data and 

were therefore chosen to provide the basis 

for the following computations. For 
computational purposes these data had to be 

estimated, and in some cases drastic 

approximations had to be made. For 
computation purposes we used diesel fuel 

oil with density 
3

/840 mkgp =ρ  injected 

in air, injector with 5 orifices mmd 25.0=  

and open pressure barPin 215= . 

The quadrilater generalized mesh used, 

was found necessary to refine near the spray 
axis because of the large velocity gradients. 

The computational programs were 2D and 

consider the injector in the middle of a 
chamfered bowl combustion chamber. 

 The Fig. 2, and 3 plot the velocity fields 

and particle motion computation for any 

representative crank angle in the cycle. 
 

3. Conclusions 

 
1. The numerical technique described has 

generally been well-behaved except 

under conditions when particles cluster 
locally so that the void fraction 

becomes negative in that cell. This is 

strictly unphysical 

2. There are a number of possibilities for 
modifying the technique to prevent 

particles from packing closer together 

than the close-packed limit, for 
example. 
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Fig. 2. Crank angle 354.4 
 

3. The development of the technique is 

based on the assumption of 
noninteracting droplets. While this 

assumption is bound to fail in the 

vicinity of the injector. 

4. Clearly, many other approximations 
are involved, such as the assumption of 

spherical droplets, as well as the 

numerical inaccuracies associated with 
a finite mesh. 

5. Much better experimental data than 

currently available will be necessary to 
resolve these questions. 
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Fig. 3. Crank angle 358.6 
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