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Abstract: The present work is concerned with the natural convection flow 

in the presence of a vertical plate in a fluid-saturated porous medium, driven 

by a chemical reaction and diffusion. The reaction-rate term is modelled in 

this study by a power-law model. Performing a suitable change of variables, 

the problem is reduced to a set of nonlinear ordinary differential equations, 

which are solved using a regular perturbation technique. The parameters of 

the reduced problem are the Lewis number and the order of the chemical 

reaction. Detailed discussions of the obtained results are presented, in terms 

of: a) stream function and concentration variations within the boundary layer 

and b) wall shear-stress, when the two parameters are varied. Comparisons 

with the analogue problem in clear fluids are also provided. 
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1. Introduction 
 

Fluid flow in porous media has been an 

area of intensive investigation for the last 

decades. The growing emphasis on 
effective granular and fibrous insulation 

systems for the successful containment of 

the transport of radio-nuclide from 
deposits of nuclear waste materials has 

stimulated various studies in fluid 

saturated porous media and many results 

were obtained for the forced and 
convective flow in the fundamental 

geometries of internal (cavities, annuli, 

etc.) and external flows. In comprehensive 
reviews of heat transfer mechanisms in 

geothermal systems, Recently, Nield and 

Bejan [6], Ingham and Pop [2-4], Vafai             
[8-9] identified many applications which 

highlight the directions where further 

theoretical and experimental developments 

and investigations are required. 

The present paper aims to study the 

natural convection flow in the presence of 
diffusion and chemical reaction in a porous 

medium saturated with a Newtonian fluid. 

We mention to this end that the 
corresponding problem for clear (viscous) 

fluids was reported and solved by Rahman 

and Mulolani [7]. 

 

2. Analysis 

 

On a vertical plate there is a chemical 
species maintained at a given 

concentration and immersed in a fluid-

saturated porous medium. Far away from 
the plate the concentration is constant, at a 

value ∞C
 The species on the plate is first 

transferred from the plate to the adjacent 
medium by diffusion. In the bulk of the 

medium there occurs a chemical reaction. 
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   In these conditions, adopting a Dacy 
model for the flow in porous medium, 

along with the Boussinesq approximation  
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where x and y are the coordinates along 
and normal to the plate, respectively, the 

orientation of the x-axis being upwards. C 

is the concentration and  D is the diffusion 

coefficient. Other notations are usual. The 
reaction-rate term is modeled in the present 

work by a power-law model  
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where k is the reaction-rate constant and n 
is the order of the reaction, see for instance 

Aris [8]. 

   The boundary conditions are 
 

0== vu , C = C0(x), at y = 0 (5a) 

  

0→v , ∞→ CC , as ∞→y   (5a) 

 

We look for the solution in the form 
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where ψ is the stream function which 
satisfies identically the continuity equation 

(1) and  
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is the concentration Rayleigh number. 

Inserting (5) we obtain: 
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The last term in (7) can be rewritten as 
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and, on physical basis, this quantity is small.  
   Since we are considering a regular 

perturbation problem, there is no need for 

matching of layers or for multiple scales. 

The unknown functions of the problem are 
expanded as follows 
 

( ) ( ) ( ) ...10 +ηε+η=η fff ,  

 

( ) ( ) ( ) ...10 +ηεφ+ηφ=ηφ   (10) 

 

and retaining the terms up to the first 
order, we obtain the following problems 

 

00 ' φ=f   (11a) 

0'''
1

000 =φ+φ f
Le

  (11b) 

( ) 000 =f , ( ) 100 =φ , ( ) 00 =∞φ   (11c) 

11 ' φ=f   (12a) 

0''''
1

000101 =φ−φ+φ+φ nff
Le

  (12b) 

( ) 001 =f , ( ) 001 =φ , ( ) 01 =∞φ   (12c) 

 
As is readily seen, two parameters, Le 

and n, are involved in the present problem. 
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3. Numerical Approach and Results 
 

   Equations (11a)-(12a) have been solved 
using a shooting method, while for               

(11b)-(12b) the superposition method was 

used, see for instance [5]. The maximum 

value of η (t infinity) sufficient to achieve 

an accuracy of 10
-6

 was 10, except for                 
Le = 0.1, when it was set to 15. 

   In Figs.1-2 there is shown the variation 

of the dimensionless stream function 
across the boundary layer, when n = 1 and 

3, for Le = 0.1, 1, 10 and 100.  

  Figs. 3 to 5 depict the velocity profiles 

across the boundary layer for n = 1 and 3. 
It is worth to remark that the dimensionless 

velocity is equal to the dimensionless 

concentration according to Eq. (7).  

Fig.1. Dimensionless stream function  

when n = 1. 

 
 

 

 

 
 

 

 
 

 

 
 

Fig.2. Dimensionless stream function, 

when  n = 3. 

 
 

 

 
 

 

 

 
 

 

 
 

 

Fig.3. Velocity profiles, n = 1, zeroth and 

first order solutions. 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Fig.4. Velocity profiles, n = 1 

 

A final comment is on the small 

parameter ε, quantity that dictates on the 

final solution. In [7] it was chosen to be 
0.01. From our Table 1 and from the 

figures it is seen that the order of 

magnitude of the first order solution is 
roughly the same as that of the zeroth order 

solution. So, a choice of a maximum 0.01 

should be appropriate, in order to get 
appropriate results. On the other hand, the 

definition of ε  given in (8) does not give 
us much chances to calculate it on a 

physical basis. So, it was decided to show 

graphically the stream function and 
velocity across the boundary layer for the 

zeroth and first order solutions. 
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Dimensionless wall shear-stress.                                  Table 1 

 Le  = 0.1 Le = 1 Le = 10 Le = 100 

f0’’(0) -0.19948 -0.62756 -1.98450 -6.27554 

n f1’’(0) f1’’(0) f1’’(0) f1’’(0) 

1 -0.218055 -0.69979 -2.17852 -6.53320 

2 -0.13900 -0.43593 -1.32077 -3.62634 

3 -0.10427 -0.32418 -0.95866 -2.42976 

 
 

 
 

Fig.5. Velocity profiles, n = 3, zeroth and 

first order solutions 

 

3. Conclusion 

 

Steady-state free convection flow over a 

semi-infinite vertical flat plate located in a 

fluid saturated porous medium was studied 
in this paper. The plate is maintained at a 

given concentration and the processes 

involved in the physics are diffusion and a 
chemical reaction in the porous medium. 

In its final formulation, the problem is 

rendered in dimensionless quantities 

(stream function and concentration) and it 
depends on two parameters (Lewis number 

and order of the chemical reaction). The 

effects of these parameters are highlighted 
by numerical simulations. 
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