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Abstract: The present study refers to a fully developed thermal mixed 

convection between two vertical and infinite walls having imposed constant 

temperatures and for a given flow rate (or pressure gradient). Viscous 

dissipation and entropy production are successively estimated and then used 

to find an optimum distance between the plates which minimizes the total 

entropy production in the flow field. Results indicated that the definition of a 

entropy criteria to use between different convection regimes is more difficult 

to apply than a dissipation criteria.  
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1. Introduction 

For a long time, the optimization of 
thermal systems was based on energy 

considerations. More recently, the 

approach switched to exergy and entropy 
analyses that seem more appropriate for 

what it is called nowadays “sustainable 

development”. Entropy production analysis 

was particularly used in describing 
irreversible thermodynamical processes 

[5]. But this theory, of rich conceptual 

content, did not offer in applied sciences 
the expected benefits due to its high 

complexity and lack of practical impact. It 

was however relaunched, in particular 

grace to the Bejan’s works of [3], by a 
simpler and more pragmatic approach that 

strengthened the optimization based on the 

limitation of entropy production. However, 
most of the corresponding works were 

essentially related to forced convection         

[6, 7, 8, 14], and much rarely to mixed 

convection [4].  
In addition, several authors emphasized 

the importance of clear distinguish, based 

on objective criteria, between forced, 
mixed and natural convection [12].  

The two concerns are considered in the 

present work that considers a fully 

developed mixed convection flow between 
two parallel plates of imposed 

temperatures. This physical system is not 

only of theoretical interest, but is part of 
more engineering applications [1, 2], even 

if the geometry is more often of annular 

type [10]. The applications include the 

efficiency and safety of thermal nuclear 
plants, refrigeration equipments, and oil 

wells in profound waters [2]. The mixed 

thermal convection is also frequently 
encountered in equipments using 

renewable energy sources, like solar panels 

or geothermal heat pumps. 
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2. System Description 
The physical system considered here 

consists of a laminar fluid flow between 

two planar walls placed at y = 0 and y = e, 
respectively, whose temperatures T1 and T2 

are imposed and (fig. 1). 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
Fig.1. Fully developed mixed convection 

flow between two vertical walls 

 
The fluid is assumed incompressible; the 

flow is globally upward, of incident 

velocity Vi. It is assumed that the viscous 

effects are negligible on the temperature 
field (in the examples considered here, the 

Brinkman number – product of Prandtl and 

Eckert numbers – is of order of magnitude 
10

-7
). Under these conditions, and denoting 

∆T = T1 – T2 for the temperature difference 
between the walls, the temperature profile 

is linear [13] 
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Starting from the above mentioned 
considerations, the viscous dissipation 

entropy production is calculated and then 

used to define a criterion to distinguish 
between the nature of the convection: 

natural or mixed. 

3. Dissipation Function  

The local viscous dissipation Φ ′′′  is 

given for the considered problem by: 

2
3
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 (3)                        

It results that the viscous dissipation 

Φ ′′ over a cross sectional area is easily 

derived as: 
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On the other hand, by use of eq. (1), the 

viscous dissipation may be expressed as: 
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The last expression is rendered 
dimensionless by adopting as reference the 

viscous dissipation associated with an 

isothermal flow, °′′Φ  : 
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The resulting dimensionless expression 

for viscous dissipation Φ+ 
is

 
: 
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 (7)   

The equivalent hydraulic diameter for 

the considered flow is equal to 2e; then, 

the Reynolds and Richardson numbers are, 
respectively: 

2
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Re ; Rii
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V e g T e
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= =
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It results that Φ+
 depends only on the 

product Ri⋅Re, which is the thermal 
buoyancy coefficient: 

( )26
7.23 10 Ri Re 1

+ −
Φ = × ⋅ +         (9) 

Moreover, the eq. (4) or (8) shows that a 

dissipation caused by the fluid floatability 

(term including ∆T or Ri⋅Re) is added to 
the dissipation that exists in an isothermal 

flow.  

 

4. Entropy Production 

 

In mixed convection, there are two 

sources of entropy production: the viscous 

dissipation Φ′′ [W/m
2
] that produces a 

« viscous entropy » ν
′′σ  [W/m

2
K], and the 

temperature gradient between the walls, 

that generates a « thermal entropy » 

th
′′σ [W/m

2
K]. 

By using eqs. (1), (2), and  (3) in the 

viscous entropy production definition 

( )
( )

2

0

[W/m K]

e

v

y
dy

T y

′′′Φ
′′σ ≡ ∫ , (10) 

an analytical expression is obtained that 
can be integrated numerically. In a first 

approximation, for small and medium 

temperature differences (∆T/T < 10%), the 
viscous entropy production may be 

expressed by dividing the viscous 
dissipation power to the mean temperature 

Tm (the temperature field being linear,               

Tm = (T1 + T2)/2) [9]: 
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The latter equation has the benefit that it 

explicitly differentiates between the heat 

transfer and viscous effects.   
On the other hand, the thermal entropy 

production 
3

[W/m K]th
′′′σ  is defined here 

as: 

2
3

2
( ) [W/m K]th

dT
y

dyT

λ
′′′σ ≡

 
 
 

     (12) 

For the physical system considered in 
fig. 1, the temperature gradient is constant 

[eq.(1)], and the thermal entropy produced 

over a cross sectional area ]KW/m[
2

thσ ′′  

is easily calculated as: 
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By using a mean temperature in eq. (12), 

it is approximated for small ∆T’s that: 
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 From eqs. (10) and (13), a total 

entropy production can now be calculated: 

2
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′′ ′′ ′′σ = σ + σ      (15) 

For small ∆T’s and using the mean 

temperature, the total entropy production 
may be approximated as the summation of 

eqs. (11) and (14): 
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Figure 2 represents the total entropy 

production totσ ′′  as a function of distance e 

between the plates for a water laminar flow 

with an incident velocity in the range              
0-0.007 m/s, and a temperature difference 

between the walls of 10 K.  

 

 
Fig. 2. Entropy production as a function of distance e, for a water laminar flow. 

Vd = 0 – 0.007 m/s ;  Tm = 293 K ; ∆T = 10 K. 

 
It is shown that the velocity influence is 

not even visible on the plotted curves. 

Results from eq. (16) are also shown, 
indicating no significant difference from 

eq. (15) for ∆T as high as 50K. Due to its 
explicit content, this equation will be 

prefered in the subsequent analysis. 

Figure 3 presents the three terms of eq. 
(16), aiming to show the relative 

importance of each term on the total sum. 

It results that the second term is really 
negligible and the competition is between 

the first and the third term. The sum 
totσ ′′  is 

dominated by the thermal component at 

small separation distances e, but by the 

buoyancy entropy at large e-values. 

Most interestingly is that the total 

entropy production ( )etotσ ′′  presents a 

minimum value for the separation distance 

corresponding to / 0tot e′′∂σ ∂ = , that will 

be called « optimum »  and denoted by eopt. 

When using eq, (16), it results an explicit 

expression for it: 
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In other words, there is an optimal 
distance between the walls for which the 

total entropy production is minimal. This 

result is due to the inverse effects of 
thermal entropy and buoyancy entropy 

indicated in fig. 3. Figure 2 indicated no 

influence of incident velocity on the total 

entropy production, for all velocity values 

considered and laminar flow conditions. In 
this case, if Vi = 0 in eq. (17), the 

temperature difference disappear from the 

mathematical expression and the optimal 
distance eopt associated with pure natural 

convection is only a function of the mean 

temperature and the corresponding 

thermophysical properties: 
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Fig. 3. Buoyancy entropy (1

st
 term), isothermal (2

nd
 term), thermal (3

rd
 term)  and total 

Tm = 293 K; ∆T =10 K  ; Vd = 0,001 m/s [eq.(15)] 
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Figure 4 presents the variation of optimal 
distance eopt with the mean temperature, for 

laminar flows and different fluids. For 

example, 
2

8,8 10opte m
−

= ⋅  for a water 

flow at Tm = 300 K. 

 

5. Selection Criteria 

 
The concepts of forced, natural or mixed 

convection are without doubt clear as 

definitions but do not exactly reflect the 
physics. The forced and natural 

convections are just limiting cases of the 

mixed convection, and in practical 
applications the convection mechanism is 

frequently of mixed type even if it is 

approximated otherwise. In addition, the 
literature offers little or incomplete 

information on how exactly to distinguish 

between the three convective regimes.   
For the physical system presented in 

fig.1, previous works propose a number of 

selection criteria [11–13] that are based on 

ratios between the present forces. The 
present study proposes other criteria, based 

on dissipation and entropy production.  

 

● Dissipation criteria 

Analysis of eq. (4) or (8) suggest that 

two approaches for the selection criteria: 

comparison of the buoyancy dissipation 

(term on ∆T or on Ri⋅Re) with the 
dissipation in an isothermal flow, or with 

the total dissipation power.       
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Fig. 4. Optimal distance as a function of mean temperature, for laminar flows and 

different fluids 

 

In the first case, the selection criterion 
becomes: 
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The interval of possible values for Γd is 

[0, +∞]. Then, forced convection may be 
associated with cases when the buoyancy 

dissipation is inferior to 5% of the 

isothermal dissipation (i.e.,  Γd < 0,05), and 

vice-versa, natural convection may be 
associated with cases when isothermal 

dissipation is less than 5% of the buoyancy 

dissipation (i.e., Γd > 20). The selection 
value of 5% is avidently arbitrary, but it is 
a reasonable value to be adopted by 

convention.  

For a fixed value of Γd, eq. (18) indicates 
that the corresponding thermal buoyancy 

coefficient is:  

Ri Re 372 d⋅ = Γ      (20) 

The previous set values of Γd   lead to the 
following: 

Γd < 0,05 ⇒ Ri Re⋅  < 83 

Γd > 20 ⇒ Ri Re⋅  > 1663 

The second approach defines another 

selection criteria, Kd, that can vary 

between 0 and 1: 
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     (21) 

Under these conditions, it is reasonable 

to assume forced convection if the 
buoyancy dissipation is inferior to 5% of 

the total dissipation (i.e., Kd < 0,05), and 

assume natural convection if the same term 

represents more than 95% of the total 
dissipation term (Kd > 0,95). 

Equation (20) can be rewritten as: 
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It results that the above selection criteria 
become: 

Kd < 0,05 ⇒ Ri Re⋅  < 85 

Kd > 0,95 ⇒ Ri Re⋅  > 1621 
 

The comparison of the selection values 

obtained for the product Ri⋅Re indicates 
magnitude of the selection values are that 
the two approaches are basically 

equivalent. Moreover, the orders of 

comparable with those derived in previous 

studies based on the friction force at the 
surface (resp. 15.2 and 5470 in [13]), or 

using other criteria (resp. 8.3 and 506, or 

8.3 and 3325, or 38 and 2318 [12]). 

 

 

● Entropy criteria 
 

Another ways to set selection criteria is 

based on entropy production sources. The 
first approach is again a comparison in eq. 

(15) of the buoyancy entropy (1
st
 term) and 

the isothermal entropy (2
nd

 term). It results 

that the ratio of the two terms is exactly the 

criteria Γd previously defined and the use 
of entropy does not bring anything new.  

A second approach is to divide the 

buoyancy entropy at the total entropy 

production, defining thus the criteria Ks: 
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or its inverse: 
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The last expression can be rewritten as: 
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where Br is the Brinkman number 

(
2

/iBr V T= µ λ ∆ ). 

Equation (24) can now be used to set 

selection values like KS = 0.05 and               

KS = 0.95, as it was done for Kd, but this 
would lead to expressions difficult to use. 

It seems then reasonable to not use entropy 

criteria as selection criteria between the 
three types of heat convection.  

 

 

 

6. Conclusion 

 
The study leads to analytical expressions 

for the viscous dissipation and total entropy 

production in laminar mixed convection 

associated with flow between parallel walls, 
expressions that put in evidence the influence 

of the thermal buoyancy. Results indicate an 

optimal separation distance between the walls 
for which the total entropy production is 

minimal. In addition, it was found a selection 

criterion useful to assess the convection mode 
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(forced, mixed or natural) and it is reasonably 
based on dissipation term contributions. The 

limiting values are of the same order of 

magnitude as the values previously obtained 
based on other selection criteria.    
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