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Abstract: In this paper a few important scientific researches of the main author, concerning the matrix exponentials, dynamics
matrices, acceleration energy as well as mathematical approach of the polynomial functions referring to trajectory planning for
the serial robots will be developed. The acceleration energy and its time derivative can have a great significance in the impulsive
(high speed motions) of robots. In order to illustrate the mathematical models, in this paper will be taken into study the
mechanical structure of a 2TR serial robot.
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1. THE FORWARD KINEMATIC EQUATIONS

During this section, the main objective consists in finding the equations of forward kinematics that can be applied for
the case of any robot structure. The forward kinematics equations are developed based on the matrix exponentials. In
the first part of this paper, the forward kinematics equations (linear and angular velocities and accelerations) are written
in an exponential form, then the obtained equations are applied to determine the expression for the acceleration energy.

1.1 Matrix Exponential in Forward Kinematics

According to [3], in the following, are presented some important expressions that result from applying the Algorithm of
Matrix Exponentials in Kinematics (MEK). The extended matrix of nominal geometry is given as input data. In the first
step, for i =1—n are determined the screw parameters, k i(o)’ \7/.(0) and the column vector, represented by b ;- Applying the
algorithm of Matrix Exponentials in robot geometry, finally is obtained the column vector of the operational coordinates
containing both, the position and the orientation for the robot end - effectors. These results are further used in determining
the equations of direct kinematics and the Jacobian matrix as well, for any robot structure, regardless complexity.
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The components of the Jacobian matrix can be also written in an explicit form, as it is presented in the expressions bellow:
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The column vector 5,- , established with the following expression, can be defined in the matrix form such as presented:

b= {13 'qi+{l?i(0) X}[1 —c(q; - 4 )k - k(O g, —s(q; - )]} 7% )

In the expressions, presented above, k 1(0) is the unit vector, that describes the orientation of each driving axis of the robot
mechanical structure; also, ¢ ; represents the generalized coordinate, or the so called geometrical control function of any
kinematical driving axis; p, describes the position of the end-effector with respect to {0} fixed frame, the parameters

k ,.(0) and \7/-(0) are the screw parameters, and finally, A; represents a matrix operator whose value depends on the type of

motion performed around and along the driving axis.
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According to MEK Algorithm, are determined some matrix exponentials, characterized by the following expressions:
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Applying some matrix transformations, into expressions (3) - (7), ﬁnally, are obtained the followmg matrix expone;ltial:
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The absolute values for angular and linear velocities and accelerations, corresponding to any kinetic link i =1—n from the
mechanical robot structure, are determined by means of the expressions which are presented in the following:
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The expressions for the Jacobian matrix written in exponential form are substituted in the generalized expression
(determined above) in order to obtain the operational velocities and accelerations, described by relations bellow:
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Remarks: The matrix exponentials enjoy important advantages due to their compact form, easy geometric visualization
and also, they avoid the frames typical to every kinetic link. The matrix exponentials have an essential role in
determining of the dynamic control functions that characterize mechanical robot structures, regardless of complexity.

2. THE KINEMATICAL CONTROL FUNCTIONS

The kinematical control functions refer to the time functions for the generalized variables from every driving joint. They
describe, in each moment, the robot configuration in keeping with the absolute motion of the end-effector, included in the
input data. According to [1], [2], [4] and [5], the kinematical control functions are determined using the differential
expressions based on Jacobian matrix or polynomial interpolating functions of various order, which are further presented .

2.1 Control Functions based Jacobian Matrix

According to [2] and [4], in the case of the application of the DKM equations based on the Jacobian matrix and its
time derivative, the kinematical control functions are determined with the following matrix expression:
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In the above equation (")OJ(H) represents the inverse of the Jacobian matrix. According to [1], [2] and [4] the

kinematical singularities for any robot type occurs when: Det [(")OJ(g? )] =(0. By applying some matrix

transformations, the inverse of the Jacobian matrix can be determined, according to the following expressions:
-1
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Remarks: In the expressions (15), for the same robot configuration there are imposed the following mathematical conditions:
7] ) _ 7t
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If the above conditions are not satisfied, [3], [4], the control functions are defined based on the polynomial interpolating functions.
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2.2 The Polynomial Interpolating Functions

In keeping with [2] and [4], this section is devoted to the presenting of the algorithm for the kinematical control
functions based the polynomial interpolating functions of (3 . m) type, with restrictions.

2.2.1 Polynomial Functions of (3-m) restrictions

Within this section are presented a few important expressions necessary to determine the kinematical control
functions based on the interpolating polynomial with (3~m) kinematical restrictions. They are characterized by means of

the spline cubic functions for the generalized coordinates from the driving joints. In the view of this for the generalized
accelerations are imposed polynomial interpolating function of first order. This algorithm is described according to [1], [2]
and [4]. The matrix of the unknown coefficients is determined on the basis of the following expression:
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In the relation above, the sub matrix A; , having [2 X (m -1 )] size can be characterized by means of the following expression:
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In the above expression, [0]'"74 represents a [2 X (m - 4)] zero matrix. The row matrix Ay , with [1 X (m —1 )] size contains

]k—2

the components presented in (18), as time functions, where [0 is a zero matrix having: 1><(k—2) size. The sub matrix

A, 4, having [2 x (m - 1)] size is characterized by means of the following expressions:
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The column vector of the unknowns described by X; and free terms B; respectively are determined with the expressions:
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The unknowns are represented by the generalized accelerations X j» which are obtained based on the equation bellow:
. T _
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where A”' represents the inverse of the matrix A . This is because the condition: [t i>0i=1> n] is satisfied.

For k=1—>m—1 , considering the results (24), the generalized velocities can be calculated with the following equation:
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Considering (21) and (22), the kinematical control functions are determined, in keeping with the expression bellow:
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Remark: In conclusion, using interpolating polynomial functions of (3 . m) type, the kinematical control functions are found.

3. THE DYNAMIC EQUATIONS

The fundamental theorems from complex systems dynamics, where robotic structures are also included, play an essential
role in determining the matrix equations of dynamics and of dynamic control functions (generalized driving forces). These
theorems are based the fundamental notions from the mechanical system dynamics, such as: the mechanical impulse,
mechanical work, and angular momentum, kinetic energy and acceleration energy, according to [4].

3.1 The Generalized Active Forces
The active forces are usually a result of gravitational load

lementul i S .
e‘(azen,u)' g applied in the mass center of robot. According to [4], the
. g generalized gravitational force is defined as:
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Figure 1: The generalized dynamic forces j=i

The generalized manipulating force applied in the last kinematical chain of the robot introduces a generalized force in
each kinetic axis of the robot, affecting the static and dynamic behavior of robot structures:
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The resultant force-momentum vector is applied with respect to {n}frame. This is given by the following expression:
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Generalized driving forces from each driving axis are the unknowns of inverse dynamic modeling used in robot control.
According to [2] and [4], the iterative algorithm of the generalized driving forces is applied. In the first step, using external
iterations, are determined the inertia forces and torque characteristic to any kinetic assembly. In the second step,
fori=n—1, are obtained (internal iterations), the resultant connecting forces and their moments, from each driving joint.
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The expression of the generalized driving force, from each driving axis, can be written in the following matrix form:
. o . o . . 1-A .
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The generalized inertia forces that characterize each driving joint from the robot structure can be written as follows:
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The resultant vector of the generalized inertia forces and moments, in the interval [i - n] with respect to the origin of the

frame {n} , in the Cartesian space is determined by applying the expression (32) whose components are given by (33).

4. THE ACCELERATION ENERGY IN THE ROBOT DYNAMICS

The dynamics equations, according to [2] and [4], in case of the robots with (n dof ) , subjected to holonomic or non-
holonomic relation, can be determined on the basis of a fundamental dynamics quantity, the acceleration energy:
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The final expression, obtained above, represents the generalized and explicit form of acceleration energy. In the explicit

form, the following operator is applied: 4,, = {{— 1; General Motion } {(); Translation Motion } {I : Rotation Motion }} .

In keeping with [4], extending the study about the mechanical system with n d.o.f.,, and applying differential
transformations, it results a new expression for the acceleration energy in matrix form. This expression is determined

based on dynamics matrices, having the following significance: M(é ,5) is the mass matrix, V(@,g) the column vector

containing the Coriolis and centrifugal terms, é;é), represents the pseudoinertial matrix of the acceleration energy.

Eg:0:0)- 17 mia)o+a7 viga)aT olgia)a]

This equation contains all the MD-type properties, as well as the
acceleration of the mass center, angular rotation velocity and acceleration.

4.1 Application of the Acceleration Energy on 2TR-type Structure

The Algorithm of Matrix Exponentials was applied on a 2TR robot structure
(Fig.2) resulting the geometry and kinematical equations. The analysis of the
2TR structure was extended in dynamics, obtaining the expression for the
acceleration energy, written in a generalized and explicit form. Performing
some differential transformations on the expression of acceleration energy, are
obtained the equations of motion for the 2TR robot structure. In the first time

the expression of Jacobian matrix, relative to {0} and the resultant Jacobian

matrix projected on {n} moving system for 2TR robot is established as:
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Figure 2 The kinematic diagram of 00000O01 0 0 0001

a 2TR robot . . . . :
The angular and linear velocities and accelerations, relative to frame {I}, are:
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The angular and linear velocities and accelerations projected on {3 } moving frame, for the 27R mechanical structure are

equal with the angular and linear velocities with respect to {0} frame. The operational velocities and accelerations are:

X =[oo7r T =l 0 6, 0 0 6]; OX=[" &=, 0 00a]] &
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where, ((3)0\73T , (3)0\73T ) are linear velocities and accelerations of end-effector relative to {O}and {3} frames, and

((3)0 EST , (3)0 ;ST ) are the angular velocities and acceleration. The expression of the acceleration energy for the 2TR robot:
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x> ly are planar

inertia mechanical moments. The dynamic equations for the 2TR type robot, based on acceleration energy , according to [4] are:

where M,,M,and M, are the mass of the kinetic elements, /, is the axial inertia moment on z axis and °/
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In the above formulas, 6E,/8G; =Q;» is the generalized inertia force from every joint of the 2TR robot, while Qé and Q,",,

is generalized gravitational force and generalized driving force from every driving joint. The last Q;'n is determined with the

equations developed in the [4], using the values for Q; and Q; , previously calculated, that is presented in the following:

Q:n (M1+M2+M3)'d1_M3'az'sq3'ds_Ma'az'qj'Cqs
Q: (= (M, +M,)-(d, +9) (40)
Qj. Ma'azz'ds_Ms'a2'sq3'd1+3Iz'ds

Matrix expression (40), dignifies generalized driving forces that characterize the dynamic behavior of 2TR robot structure.

5. CONCLUSIONS

This paper has been devoted to present a few important new formulations about the kinematical control functions
and dynamic equations for a robotic system. Based on the formulation within this paper, a fundamental notion in the robot
dynamics was analyzed. Using matrix exponentials, the acceleration energy has been developed and applied for the case of
a 2TR robot structure. The acceleration energy represents an important dynamic notion that leads to the determination of the
dynamics equations typical of the mechanical robot structure taken into study. The explicit form can be applied in case of
any rigid body regardless of motion performed by the kinetic link. The acceleration energy represents an important
dynamic notion that can be used in order to determine the generalized inertia forces and dynamics equations for holonomic
or non holonomic robotic systems, with rigid or elastic structure.
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