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Abstract: In this paper a few important scientific researches of the main author, concerning the matrix exponentials, dynamics 

matrices, acceleration energy as well as mathematical approach of the polynomial functions referring to trajectory planning for 

the serial robots will be developed. The acceleration energy and its time derivative can have a great significance in the impulsive 

(high speed motions) of robots. In order to illustrate the mathematical models, in this paper will be taken into study the 

mechanical structure of a 2TR serial robot. 
Keywords:  robotics, dynamics, acceleration energy, kinematics, polynomial functions. 

 

 

1. THE FORWARD KINEMATIC EQUATIONS 
 

During this section, the main objective consists in finding the equations of forward kinematics that can be applied for 

the case of any robot structure. The forward kinematics equations are developed based on the matrix exponentials. In 

the first part of this paper, the forward kinematics equations (linear and angular velocities and accelerations) are written 

in an exponential form, then the obtained equations are applied to determine the expression for the acceleration energy. 

 

1.1 Matrix Exponential in Forward Kinematics 
 

 According to [3], in the following, are presented some important expressions that result from applying the Algorithm of 

Matrix Exponentials in Kinematics (MEK). The extended matrix of nominal geometry is given as input data. In the first 

step, for ni →=1  are determined the screw parameters, ( )0
ik , ( )0

iv  and the column vector, represented by ib . Applying the 

algorithm of Matrix Exponentials in robot geometry, finally is obtained the column vector of the operational coordinates 

containing both, the position and the orientation for the robot end - effectors. These results are further used in determining 

the equations of direct kinematics and the Jacobian matrix as well, for any robot structure, regardless complexity. 
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The components of the Jacobian matrix can be also written in an explicit form, as it is presented in the expressions bellow: 
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The column vector ib , established with the following expression, can be defined in the matrix form such as presented: 
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In the expressions, presented above, ( )0
jk  is the unit vector, that describes the orientation of each driving axis of the robot 

mechanical structure; also, jq  represents the generalized coordinate, or the so called geometrical control function of any 

kinematical driving axis; np  describes the position of the end-effector with respect to { }0  fixed frame, the parameters 

( )0
ik  and 

( )0
iv  are the screw parameters, and finally, i∆  represents a matrix operator whose value  depends on the type of 

motion performed around and along the driving axis.  
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According to MEK Algorithm, are determined some matrix exponentials, characterized by the following expressions: 
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Applying some matrix transformations, into expressions (5) - (7), finally, are obtained the following matrix exponential: 
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The absolute values for angular and linear velocities and accelerations, corresponding to any kinetic link ni →=1  from the 

mechanical robot structure, are determined by means of the expressions which are presented in the following: 
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The expressions for the Jacobian matrix written in exponential form are substituted in the generalized expression 

(determined above) in order to obtain the operational velocities and accelerations, described by relations bellow:  
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Remarks: The matrix exponentials enjoy important advantages due to their compact form, easy geometric visualization 

and also, they avoid the frames typical to every kinetic link. The matrix exponentials have an essential role in 

determining of the dynamic control functions that characterize mechanical robot structures, regardless of complexity. 

 

 

2. THE KINEMATICAL CONTROL FUNCTIONS 
 

The kinematical control functions refer to the time functions for the generalized variables from every driving joint. They 

describe, in each moment, the robot configuration in keeping with the absolute motion of the end-effector, included in the 

input data. According to [1], [2], [4] and [5], the kinematical control functions are determined using the differential 

expressions based on Jacobian matrix or polynomial interpolating functions of various order, which are further presented . 

 

2.1 Control Functions based Jacobian Matrix 
 

According to [2] and [4], in the case of the application of the DKM equations based on the Jacobian matrix and its 

time derivative, the kinematical control functions are determined with the following matrix expression:  
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.In the above equation  
( ) ( ) 10n J

−θ  represents the inverse of the Jacobian matrix. According to [1], [2] and [4] the 

kinematical singularities for any robot type occurs when: ( ) ( )[ ] 0JDet 0n ≡θ . By applying some matrix 

transformations, the inverse of the Jacobian matrix can be determined, according to the following expressions: 
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Remarks: In the expressions (15), for the same robot configuration there are imposed the following mathematical conditions: 
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If the above conditions are not satisfied, [3], [4], the control functions are defined based on the polynomial interpolating functions. 
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2.2 The Polynomial Interpolating Functions 

 

 In keeping with [2] and [4], this section is devoted to the presenting of the algorithm for the kinematical control 

functions based the polynomial interpolating functions of ( )m3 ⋅  type, with restrictions. 

 

2.2.1 Polynomial Functions of ( )m3 ⋅  restrictions 

 

Within this section are presented a few important expressions necessary to determine the kinematical control 

functions based on the interpolating polynomial with ( )m3 ⋅  kinematical restrictions. They are characterized by means of 

the spline cubic functions for the generalized coordinates from the driving joints. In the view of this for the generalized 

accelerations are imposed polynomial interpolating function of first order. This algorithm is described according to [1], [2] 

and [4]. The matrix of the unknown coefficients is determined on the basis of the following expression: 
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In the relation above, the sub matrix 1A , having ( )[ ]1m2 −×  size can be characterized by means of the following expression: 
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In the above expression, [ ] 4m
0

−
 represents a ( )[ ]4m2 −×  zero matrix. The row matrix kA , with ( )[ ]1m1 −×  size contains 

the components presented in (18), as time functions, where [ ] 2k
0

−
 is a zero matrix having: ( )2k1 −×  size. The sub matrix 

1mA − , having  ( )[ ]1m2 −×  size is characterized by means of the following expressions: 
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The column vector of the unknowns described by X j  and free terms B j  respectively are determined with the expressions: 
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The unknowns are represented by the generalized accelerations jX , which  are obtained based on the equation bellow: 
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For  1m1k −→= , considering the results (24), the generalized velocities can be  calculated with the following equation: 
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Considering (21) and (22), the kinematical control functions are determined, in keeping with the expression bellow: 
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Remark: In conclusion, using interpolating polynomial functions of ( )m3 ⋅  type, the kinematical control functions are found. 

 

 

3. THE DYNAMIC EQUATIONS 
 

 The fundamental theorems from complex systems dynamics, where robotic structures are also included, play an essential 
role in determining the matrix equations of dynamics and of dynamic control functions (generalized driving forces). These 

theorems are based the fundamental notions from the mechanical system dynamics, such as: the mechanical impulse, 

mechanical work, and angular momentum, kinetic energy and acceleration energy, according to [4]. 

 

3.1 The Generalized Active Forces 

 

The active forces are usually a result of gravitational load 

applied in the mass center of robot. According to [4], the 

generalized gravitational force is defined as:  
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The generalized manipulating force applied in the last kinematical chain of the robot introduces a generalized force in 

each kinetic axis of the robot, affecting the static and dynamic behavior of robot structures: 
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The resultant force-momentum vector is applied with respect to { }n frame. This is given by the following expression: 
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Generalized driving forces from each driving axis are the unknowns of inverse dynamic modeling used in robot control. 

According to [2] and [4], the iterative algorithm of the generalized driving forces is applied. In the first step, using external 

iterations, are determined the inertia forces and torque characteristic to any kinetic assembly. In the second step, 

for 1ni →= , are obtained (internal iterations), the resultant connecting forces and their moments, from each driving joint.  
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The expression of the generalized driving force, from each driving axis, can be written in the following matrix form: 
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Figure 1: The generalized dynamic forces 
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The generalized inertia forces that characterize each driving joint from the robot structure can be written as follows: 
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The resultant vector of the generalized inertia forces and moments, in the interval [ ]ni →  with respect to the origin of the 

frame { }n , in the Cartesian space is determined by applying the expression (32) whose components are given by (33). 

 

 

4. THE ACCELERATION ENERGY IN THE ROBOT DYNAMICS 
 

 The dynamics equations, according to [2] and [4], in case of the robots with ( )fodn .. , subjected to holonomic or non-

holonomic relation, can be determined on the basis of a fundamental dynamics quantity, the acceleration energy: 
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The final expression, obtained above, represents the generalized and explicit form of acceleration energy. In the explicit 

form, the following operator is applied:  { } { } { }{ }MotionRotation1;;MotionnTranslatio0;;MotionGeneral 1;∆M −= . 

In keeping with [4], extending the study about the mechanical system with n d.o.f., and applying differential 

transformations, it results a new expression for the acceleration energy in matrix form. This expression is determined 

based on dynamics matrices, having the following significance: ( )θθ &
;M  is the mass matrix, ( )θθ &

;V  the column vector 

containing the Coriolis and centrifugal terms, ( )θθ &
;D , represents the pseudoinertial matrix of the acceleration energy.  
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This equation contains all the MD-type properties, as well as the 

acceleration of the mass center, angular rotation velocity and acceleration.  

 

4.1 Application of the Acceleration Energy on 2TR-type Structure 
 

The Algorithm of Matrix Exponentials was applied on a 2TR robot structure 

(Fig.2) resulting the geometry and kinematical equations. The analysis of the 

2TR structure was extended in dynamics, obtaining the expression for the 

acceleration energy, written in a generalized and explicit form. Performing 

some differential transformations on the expression of acceleration energy, are 

obtained the equations of motion for the 2TR robot structure. In the first time 

the expression of Jacobian matrix, relative to { }0  and the resultant Jacobian 

matrix projected on { }n  moving system for 2TR robot is established as: 
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The angular and linear velocities and accelerations, relative to frame {}i ,  are:  
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The angular and linear velocities and accelerations projected on { }3  moving frame, for the 2TR mechanical structure are 

equal with the angular and linear velocities with respect  to { }0  frame. The operational velocities and accelerations are: 
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Figure 2 The kinematic diagram of  

               a 2TR robot 
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where,  
( ) ( )( )TT vv 3

03
3

03 , &  are linear velocities and accelerations of end-effector relative to { }0 and { }3  frames, and 

( ) ( )( )TT
3

03
3

03 , ωω &  are the angular velocities and acceleration. The expression of the acceleration energy for the 2TR robot:  
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where 1M , 2M and 3M  are the mass of the kinetic elements, zI is the axial inertia moment on z axis and xxI
3

, yyI
3
  are planar 

inertia mechanical moments. The dynamic equations for the 2TR type robot, based on acceleration energy , according to [4] are: 
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In the above formulas, 
�iiA QqE =∂∂ &&  is the generalized inertia force from every joint of the 2TR robot, while 

i
gQ  and 

i
mQ  

is generalized gravitational force and generalized driving force from every driving joint. The last 
i
mQ  is determined with the 

equations developed in the [4], using the values for i
gQ  and  

�iQ , previously calculated, that is presented in the following: 
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                                                                     (40) 

 

Matrix expression (40), dignifies generalized driving forces that characterize the dynamic behavior of 2TR robot structure. 

 

 

5. CONCLUSIONS 
 

 This paper has been devoted to present a few important new formulations about the kinematical control functions 

and dynamic equations for a robotic system. Based on the formulation within this paper, a fundamental notion in the robot 

dynamics was analyzed. Using matrix exponentials, the acceleration energy has been developed and applied for the case of 

a 2TR robot structure. The acceleration energy represents an important dynamic notion that leads to the determination of the 

dynamics equations typical of the mechanical robot structure taken into study. The explicit form can be applied in case of 

any rigid body regardless of motion performed by the kinetic link. The acceleration energy represents an important 

dynamic notion that can be used in order to determine the generalized inertia forces and dynamics equations for holonomic 

or non holonomic robotic systems, with rigid or elastic structure. 
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