

MECHANICAL APPLICATION OF THE THEORY OF DODECAHEDRON AND HEXAHEDRON

¹**Mihai Tofan**, ¹**Ioan Goia**, ²**Daniel Scărlătescu** ¹⁾Univ. TRANSILVANIA - , ²⁾Comp. APA Brașov

De mai bine de **2300 de ani reflectăm** la **elementele** lui **EUCLID / PLATON !**, găsind încă o fereastră deschisă către noi reflexii !

Tipul	f	v	m	$p=\frac{2m}{v}$	$q=\frac{2 m}{f}$		
Tetraedrul	4	4	6	3	3		
Hexaedrul (cubul)	6	8	12	3	4		
Octoedrul	8	6	12	4	3		
Dodecaedrul	12	20	20	2	3.333		
Icosaedrul	20	12	30	5	3		
ii := 1 5	P _{ii} –	1 := <mark>2·ge</mark> 1 := ge i	[∋] ii−1,2	q _{ii−1} := $\frac{2 \cdot ge_{ii−1}}{ge_{ii−1}}$, <u>2</u>		
			I= I, I	3	0		

З

p = | 4|

2

5

8

qe :=

6 12

12 20 20

3

3.333

3

Fig. 1 Octo înscris în hexaedru

De astă dată, problema care ne-a frământat a fost ridicată de numărul segmentelor funcției poligonale antrenate la desenarea în MathCAD a poliedrelor, întru figurarea tuturor muchiilor. La început, în 99, desenarea cele **30** de muchii ale icosaedrului ne-a reclamat **65** de segmente, acum, după zece ani, revennd ca din întâmplare, de altfel ca și prima experiență, și grupând muchiile în polare și cele ale brîului icosaedral, am **redus acest număr la 41, dar încă departe de bornă !** col(Q) = 65 Fig.4, 8, 10 PA := EXT3(PN, PB, PS) col(PA) = 41 Fig.4, 6 !

ICOSAEDRUL A .xmcd

$c(q) := cos(q)$ $s(q) := sin(q)$ $(u \ a \ i \ ax) := (01 \ 02 \ 05 \ 05)$ $unu(n) := iden$	tity(n) g(q) :=q∙deg ⁻¹
EXT(A, B) := augment (A, B) EXT3(A, B, C) := augment3(A, B, C) col(A) := cols	(A) $lin(A) := rows(A)$
$\alpha := \frac{\pi}{5} \chi := \operatorname{acos}\left[\left(2 \cdot \mathbf{s}(\alpha) \right)^{-1} \right] \operatorname{Rs} := \left(2 \cdot \mathbf{s}(\chi) \right)^{-1} \operatorname{Rp} := \left(2 \cdot \mathbf{s}(\alpha) \right)^{-1} \beta := \operatorname{acos}\left(\operatorname{Rp} \right)$	$\beta - \chi = 0$ $g(\alpha) = 36$
$(\mathbf{g}(\beta) \chi - \beta) = (31.717 0) \qquad \qquad$	$H_0 + H_1 \cdot .5$
$\mathbf{Rs} - \mathbf{RS} = 0 \qquad \mathbf{H}^{T} = (0.526 0.851 \) \mathbf{P}^{\langle \mathbf{i} + 1 \rangle} := \mathbf{RZ}(2 \cdot \alpha \cdot \mathbf{i}) \cdot \mathbf{RX}(-\chi)^{\langle 1 \rangle} + \mathbf{E}^{\langle 2 \rangle} \cdot \mathbf{Rs} \mathbf{P}_{\mathbf{M}}^{\langle \mathbf{i} + 1 \rangle}$	$i := \mathbf{E}^{\langle 2 \rangle} \cdot Rs \cdot (-1)^{u}$
$P_{w}^{\langle i+6\rangle} := \mathbf{RZ} \left[2 \cdot \alpha \cdot \left(i + \frac{1}{2} \right) \right] \cdot \mathbf{RX}(\chi)^{\langle 1 \rangle} - \mathbf{E}^{\langle 2 \rangle} \cdot \mathbf{Rs} (\mathbf{g}(\chi) \ \mathbf{g}(\beta) \ \mathbf{g}(\alpha) \) = (31.717 \ 31.717)^{\langle 1,21,21,21,21,21,21,21,21,21,21,21,21,21$	36)
$\begin{pmatrix} H_0 & Rs \\ H_1 & Rp \end{pmatrix} = \begin{pmatrix} 0.526 & 0.951 \\ 0.851 & 0.851 \end{pmatrix}$ Is := 0 11 (i ip jb) := (0 4 0, 2 4 0 9) Nb _U	, i ≔ 1 + 5·u + i
$x := 05$ (i in jn) := (04 019 09) ib := 010 jC := 022 $NC_{U+2.i} := Nb_{U_1}$	NC10 := NC0
$col(P) = 12 Pv^{\langle u \rangle} := P^{\langle u \cdot 11 \rangle} Pv = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 051 \end{pmatrix} EXT(P^{\langle 0 \rangle}, P^{\langle 11 \rangle}) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 0 0 0
	.901 -0.901 /

P_{2,Is}

×××

P_{2,Nb1 x}

- 0.5

0 0.5

 $P_{1,ls}, P_{1,Nb}_{1,x}$

(<u>i, in</u> jn) := (04 019 09)
$pin_{a,in} := 3 \cdot in + a It^{\langle i \rangle} := (0 i+1)^{T}$
$ \mathbf{t}^{(i+15)}_{i+15} = (10 \ i \ 11)^{T} O^{(pin_{2},u,in)} = P^{(It_{0},in)}$
$\langle \text{pin}_{1,\text{in}} \rangle = \langle \text{It}_{1,\text{in}} \rangle \langle \text{pin}_{2,19} + 1 + \text{js} \rangle = \langle \text{Ich}_{\text{is}} \rangle$
$Q := \mathbf{B} \cdot \mathbf{Q}$ $col(\mathbf{Q}) = 65$

 $P_{0,ls}, P_{0,Nb}_{1,x}$

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
lt=	0	0	0	0	0	0	1	1	2	2	3	3	4	4	5	5	10	9	8	7	6	
	1	1	2	3	4	5	10	6	6	7	7	8	8	9	9	10	11	11	11	11	11	
Lin	$L_{in} := \left P^{\langle II_{1,in} \rangle} - P^{\langle II_{0,in} \rangle} \right - 1 Ip^{\langle i \rangle} := (i + 1 i + 2)^{T} Ip_{1,4} := 1 Ip^{\langle i + 5 \rangle} := (i + 6 i + 7)^{T} Ip_{1,9} := 6$																					
								0	1	2 3	4	5	6	7 8	9							
							l <mark>p=</mark> 0	1	2	3 4	l 5	6	7	8 9	10							
							1	2	3	4 5	5 1	7	8	9 10	6							

 $\mathbf{b}_{0,ax}, \mathbf{Q}_{0,cin}, \mathbf{Q}_{0,ci}, \mathbf{P}_{0,Nc_{ib}}$

	(0	0	1	2	3	4	15	15	16	17	18	19 \
	1	5	6	7	8	9	16	10	11	12	13	14
F.:=	2	10	11	12	13	14	17	6	7	8	9	5
	3	6	7	8	9	5	18	11	12	13	14	10
	4	1	2	3	4	0	19	16	17	18	19	15 /

Fig. 8 Dodecaedrul

Fig. 9 Înscrierea dodeca în icosaedru

Tentativa construirii cu **migală în Word**, a unui traseu mai "scurt" a rămasa fără răspuns în MathCAD, rețeaua muchiilor reclamând prin penta - incidențele polare, multiple reveniri / supratrasări a unora dintre ultimele 10 muchii!

Am continuat suita reflexiei asaupra poliedrelor cu " începuturile seriei nemărginite" a însriptilităților, generate de simetria sferică !

Fig. 13 Dodekaeder

Dodecaedrul $l = 0 \dots 61$

 $\mathsf{Q}_{1,cin},\mathsf{S}_{1,I}$ **Icosaedrul** $cin = 0 \dots 64$

D, I, MD, 05 Octombrie. '2009 /

iz $h\phi := (1 + 2 \cdot \phi - 2)^{T} 2^{-1} \quad h\phi_{2+u} := -h\phi_{1-u}$ $h\phi^{\langle iz \rangle} := (3 \quad h\phi_{iz})^{T} \qquad h\phi^{\langle 2 \cdot iz \rangle} := h\phi^{\langle iz \rangle}$ $h\phi^{\langle 2 \cdot u+1 \rangle} := \begin{bmatrix} 0 \quad h\phi_{(2 \cdot u+1)} \end{bmatrix}^{T} \quad h\phi_{u+iz \cdot 2} := h\phi_{u,iz}$ $\boldsymbol{h}\boldsymbol{\phi}^{\left<1\right>}:= \begin{pmatrix} \boldsymbol{0} & \boldsymbol{h}\boldsymbol{\phi}_{1,\,0} \end{pmatrix}^{T} & \boldsymbol{h}\boldsymbol{\phi}^{\left<3+2\cdot\boldsymbol{u}^{\right>}}:= \begin{bmatrix} \boldsymbol{3}\cdot(1-\boldsymbol{u}) & (-1)^{\boldsymbol{u}} \end{bmatrix}^{T}$

$$\begin{array}{c} H = \begin{pmatrix} 2.118 & 0.947 & -0.947 & -2.118 \end{pmatrix} \\ Jh = \begin{bmatrix} 1 & 0 \\ \\ 0 & 2 \cdot (1 + 2 \cdot \phi)^{-1} \end{bmatrix} \quad h\phi = \begin{pmatrix} 2.118 \\ 1 \\ \\ -1 \\ \\ -2.118 \end{pmatrix} \quad h\phi := Jh \cdot h\phi$$

iz,hφ_{0,jf}

Fig. 15 Organizarea verticală a fețelor penta ale dodecaedrului !

PENTA - DECAGONUL - Grig p. 63, 64, incidențe ale numărului de aur 🗆

P_{0,ax},r_{0,j},r5_{0,ax},R5_{0,is} Fig. 16 Pentagonul

 $r_{0,i}, rd_{0,jc}$

Fig. 18

 $I / Grig ! \rightarrow 16 : 49 ! \square mic = \square de aur cu laturile$ $I, \sqrt{\phi}, \square, Elipsa mare = de aur, cu semiaxe 1, \square !$

 $r_{0,i}, rs_{0,jc}$

Fig. 19

Decagonul stelat cu latra ⊡înscrise în cercul trigonometric