
 807

 

 

 The 3rd International Conference on  

″″″″Computational Mechanics  

and Virtual Engineering″″″″ 

COMEC 2009 

29 – 30 OCTOBER 2009, Brasov, Romania 

    

 

THE INFLUENCE OF FORCED STEERING VIBRATIONS ON A WHEEL   

AND DYNAMIC EFFECT OF A WHEEL WITH ABS BRAKING ON 

UNDULATED ROAD I 
 

Vasii Marian¹; Scutaru Maria Luminita
2
;  Vlase Sorin

2
  

1
Renault Technologie Roumanie”, Department Prestations Clients, marian.vasii-renexter@renaults.com 

2
Transilvania” University of Brasov-Romania, Department of Mechanics, luminitascutaru@yahoo.com, 

svlase@yahoo.com 
 

 

Abstract: A steering/suspension system of an automobile exhibits a rather complex configuration and possesses many degrees of freedom. 

A simplification is necessary to conduct a sensible analysis to gain insight into its general dynamic behavior and into the influence of 

important parameters of the system. Investigation of the steering mode of vibration requires at least the steering degree of freedom of the 

front wheel, possibly extended with the rotation degree of freedom of the steering wheel. For the sake of simplicity, one degree of freedom 
may be suppressed by holding the steering spring clamped at the node of the natural mode of vibration. 
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1. INTRODUCTION 
 

We will consider the influence of two more degrees of freedom: the vertical axle motion and the longitudinal 

deflection of the suspension with respect to the steadily moving vehicle mass. The picture of Fig.1 shows the lay-out of 

system. Due to the assumed orthogonally of the system (wheel axis, king-pin, road plane) the dynamically coupled horizontal 

motions ( ψx ) are not coupled with the vertical axle motion when small displacements are considered and tyre contact forces are 

disregarded. First, we will examine the dynamics of the free system not touching the road. After that, the tyre is loaded and tyre 

transient models for the in-plane and out-of-plane behavior are introduced and the system response to wheel unbalance will be 

assessed and discussed. 

 

                                
 

Figure 1: Configuration of a simple steering/suspension system and the resulting natural  

frequencies and vibration modes. 
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2. DYNAMICS OF THE UNLOADED SYSTEM EXCITED BY WHEEL UNBALANCE 
 

The simple system depicted in Fig.1 possesses two horizontal degrees of freedom: the rotation about the vertical 

steering axis,ψ , and the fore and aft suspension deflection, x. The figure provides details about the geometry, stiffnesses, 

damping and inertia. The mass m represents the total mass of the horizontally moving parts. The length iz denotes the 

radius of inertia: mii zz /2 = . 

The wheel rim that revolves with a speed Ω  is provided with an unbalance mass mun (in the wheel centre plane at a 

radius run). The centrifugal force has a component in forward direction: 

 trmF ununxun ΩΩ−= sin2
,                     (1) 

The equations of motion of this fourth-order system read: 

xunxx Fxcxkmbxm ,=+++− &&&&& ψ             (2) 

xunz lFckxmbbim ,
22
)( −=++−+ ψψψ ψψ &&&&&&          (3) 

With damping disregarded, the magnitude of the frequency response function becomes: 
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in which we have the zero frequency: 
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where we have introduced the 'uncoupled' natural frequencies: 
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and the coupling factor: 
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 For the analysis, we are interested in the influence of the fore and aft compliance of the suspension. In the right-

hand diagram of Fig.1 the two natural frequencies have been plotted as a function of the longitudinal natural frequency 

ratio (squared), which is proportional to the longitudinal stiffness cx, together with the constant vertical natural frequency 

and the zero frequency for three different values of f/b. In addition, the location of the two centers of rotation according to 

the two modes of the undraped vibration have been indicated.                                                                                               

The two steer natural frequencies 1ω  and 2ω increase with increasing longitudinal suspension stiffness. The lower 

natural frequency with a centre of rotation located at the inside of the king-pin, approaches the uncoupled natural 

frequency ψω . 

From (5) it is seen that a zero does not occur if the unbalance arm length l lies in the range 0<l<b which does not 

represent a usual configuration. For the normal situation with b>0 the zero frequency line may cross the second natural 

frequency curve if l is not too large. If the two frequencies coincide, the second resonance peak of the steer response to 

unbalance will be suppressed. In that case, the unbalance force line of action passes through the centre of rotation of the 

higher vibration mode. 

It may be noted that the situation with contact between wheel and road can be simply modeled if the wheel is 

assumed to be rigid. The same equations apply with inertia parameters adapted according to the altered system with a 

point mass attached to the axle in the wheel plane. The point mass has the value 
2/ rlw

 
where lw denotes the wheel polar 

moment of inertia and r the wheel radius. 
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3. DYNAMICS OF THE LOADED SYSTEM WITH TIRE PROPERTIES INCLUDED 
 

In a more realistic model the in-plane and out-of-plane slip, compliance and inertia parameters should be taken into 

account. A possible important aspect is the interaction between vertical tyre deflection and longitudinal slip which may 

cause the appearance of a third resonance peak near the vertical natural frequency of the wheel system. The longitudinal 

carcass compliance gives rise to an additional natural frequency around 40 Hz of the wheel rotating against the foot print 

Due to damping, originating from tangential slip of the tyre, a supercritical condition will arise beyond a certain forward 

velocity. This causes the additional natural frequency to disappear. 

For the extended system with road contact, the following complete set of linear equations apply: 

xunxxxx FFmbxxxm ,

2 )2( =−−++ ψωωζ &&&&&&                                         (9) 

xunzzxz Fzzzm ,

2 )2( =++ ωωζ &&&                                                                                                              (10) 

xunzx lFMlFxmbl ,

2 )2( −=−+−++ &&&&&& ψωψωζψ ψψψψ                                                                     (11) 

0( 0 =++Ω xw Frl &                                                                                                                                 (12) 

sxFkxxk VCFVF −=+ 0
&σ                                                                                                                          (13) 

syFayya VCFVF −=+ 0
&σ                                                                                                                         (14) 

zrlxVsx ηψ 000 )( Ω+Ω−Ω−−= &&                                                                                                      (15) 

ψ0VVsy −=                                                                                                                                                (16) 

ygyryaz FVCk
V
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0

0

1
−∗−−= ψ                                                                                                           (17)  

trmF ununxun 0

2

0, sinΩΩ−=                                                                                                                      (18) 

trmF ununzun 0

2

0, cosΩΩ=                                                                                                                        (19) 

000 Ω= rV                                                                                                                                                   (20) 

 

Table 1. Parameter values of wheel suspension system and type considered 

 
 

Note that mechanical caster has not been considered so that the lateral slip speed is simply expressed by (16). The 

rolling resistance moment has been neglected in (12) and the average effective rolling radius has been taken equal to the 

average axle height or loaded radius r0 (in reality re is usually slightly larger than r0). 
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 Figure 2: Steer vibration amplitude due to wheel unbalance as a function of wheel frequency of revolution  π2/0Ω=n  for various 

values of the longitudinal suspension stiffness. 

 

In Table 1 the set of parameter values used in the computations have been listed. The moment of inertia about the 

steering axis is denoted with ψi  and equals )( 22

zibm + . The amplitude of the steer angle that occurs as a response to a 

wheel unbalance mass of 0.1kg has been plotted as a function of the wheel speed of revolution in Fig.2. To examine the 

influence of the longitudinal suspension compliance a series of values of the longitudinal stiffness cx has been considered.  

 

 

 
Figure 3: Variation of the three natural frequencies with longitudinal suspension stiffness at different speeds together with the 

constant vertical natural frequency. The circles on the horizontal axis mark the stiffness cases of Figure 2. 

 

In figure 3 these values have been indicated by marks on the stiffness axis. Clearly, in agreement with the variation 

of the natural frequencies assessed in this figure, the two resonance peaks move to higher frequencies when the stiffness is 

raised. A third resonance peak may show up belonging to the vertical natural frequency. This peak remains at the same 

frequency. It is of interest to observe that when the lowest steer natural frequency n1 coincides with nz the interaction between 

vertical and horizontal motions causes the peak to reach relatively high levels. The zero frequency closely follows the 

formula (5) of the free system. At the lowest stiffness the zero frequency n0 almost coincides with the second natural 

frequency n2 and suppresses the second peak. 

 

 

 
Figure 4: Influence the varies type parameters  on the steer angle amplitude response curve 

 

 

4 CONCLUSION 
 

In Fig.4 the result of making these parameters equal to zero has been  depicted for the stiffness case mNXcx /103 5= . 

Neglecting the factor η  (case 1) meaning that the effective rolling radius would not change with load, appears to have a 
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considerable effect indicating that, with η , the vertical motion does amplify the steering oscillation. Omitting the 

gyroscopic tyre moment (2), while reinstating η , appears, as expected, to effectively decrease the steer damping. This is 

strengthened by additionally deleting the moment due to tread width (3). Omitting the relaxation lengths (4) lowers the 

peaks, thus removing the negative damping due to tyre compliance. Deleting, in addition, the side force and the aligning 

torque (5) raises the peaks again indicating that some energy is lost through the side slip. Disregarding the horizontal tyre 

forces altogether (6) brings us back to the (horizontally) free system. As predicted by the analysis, two sharp resonance 

peaks arise as well as the dip at the zero frequency. 
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