The 3rd International Conference on
"Computational Mechanics and Virtual Engineering" COMEC 2009 29 - 30 OCTOBER 2009, Brasov, Romania

EXPERIMENTAL VALIDATION OF A NUMERICAL STUDY OF GASOSTATIC FORMING, USING WAVELET TRANSFORMS

Gavril GREBENIŞAN ${ }^{1}$, Sorin MURESSAN ${ }^{1}$
${ }^{1,2}$ University of Oradea, Romania, grebe@uoradea.ro

Abstract

Based on recently authors' works, [1], this paper, consists on an extension of volumes generation mathematical model, and are focused on a step by step procedure of volume generation. Main part of the paper are focussed on mathematical model of the evolution process, in a deformation process, and additional procedure it is used in order to open new means of appropriate procedure of signal processing. In this work, signal processing is used as another clearly and soft way of evolution process study. The file used by MATLAB wavelet transform it is the matrix results of experimental work, in order to obtain the blow-up parts. Keywords: mathematical model, MATLAB, wavelet transform, superplasticity

1. INTRODUCTION OF THE METHOD

This work describes, detailed, the theoretical study of the mathematical application $F: C \rightarrow C^{\prime}$, $F(u, v, w)=(x, y, z)$, which is the evolution application, given by:

$$
\begin{align*}
& x(u, v, w)=\left(\begin{array}{ll}
R & \Delta l+w)
\end{array} \frac{u}{R}\right. \\
& y(u, v, w)=\left(\begin{array}{ll}
R & \Delta l+w
\end{array}\right) \quad \frac{v}{R} \tag{1'}\\
& z(u, v, w)=R \quad \Delta l+\Delta s+1 \quad \frac{\Delta s}{\Delta l} \quad w \quad \frac{l}{R} \sqrt{R \quad u^{2} v^{2}}
\end{align*}
$$

where $u^{2}+v^{2} \leq R^{2}$ and $w \in[0, \Delta l]$, are the parametric equations of volume $\mathbf{C},[1]$.
First of all, if exists $\left(u_{1}, v_{1}, w_{1}\right)$ and $\left(u_{2}, v_{2}, w_{2}\right)$ in C such that $F\left(u_{1}, v_{1}, w_{1}\right)=F\left(u_{2}, v_{2}, w_{2}\right)$ then, it's obviously from definition of F , that $\left(u_{1}=u_{2}, v_{1}=v_{2}, w_{1}=w_{2}\right)$ which verify injectivity of F .

Now we consider $P(X, Y, Z)$ a point in C^{\prime}, which means that will exist an unique $W_{0} \in[0, \Delta l]$ with

$$
\frac{X^{2}}{\left(\begin{array}{ll}
R & \left.\Delta l+W_{0}\right)^{2}
\end{array}+\frac{Y^{2}}{\left(\begin{array}{ll}
R & \left.\Delta l+W_{0}\right)^{2} \tag{1}
\end{array}+\frac{Z^{2}}{R \quad \Delta l+\Delta s+1 \quad \frac{\Delta s}{\Delta l} W_{0}}{ }^{2}\right.}=1 / 2=10\right.}
$$

Choosing $U_{0}=\frac{R X}{\left(\begin{array}{ll}R & \Delta l+W_{0}\end{array}\right)}, V_{0}=\frac{R Y}{\left(\begin{array}{ll}R & \Delta l+W_{0}\end{array}\right)}$ we verify that $F\left(U_{0}, V_{0}, W_{0}\right) \equiv P$.

1.1. Conditions on parameters U_{0}, V_{0}, W_{0}

We know that $W_{0} \in[0, \Delta l]$ and using (1) we'll obtain $U_{0}^{2}+V_{0}^{2}=\frac{R^{2}\left(X^{2}+Y^{2}\right)}{\left(R \quad \Delta l+W_{0}\right)^{2}}=R^{2} \quad l \quad \frac{Z^{2}}{[\ldots]^{2}} \leq R^{2}$

1.2. Equation which define the application F

For U_{0}, V_{0} and W_{0} considered bove we obtain by (1^{\prime}) and (1)

$$
\begin{aligned}
& x=\left(\begin{array}{ll}
R & \Delta l+W_{0}
\end{array}\right) * \frac{U_{0}}{R}=X, \\
& y=\left(\begin{array}{ll}
R & \Delta l+W_{0}
\end{array}\right) * \frac{V_{0}}{R}=Y, \\
& z=R
\end{aligned} \quad \Delta l+\Delta s+1 \frac{\Delta s}{\Delta l} W_{0} \quad \frac{1}{R} \sqrt{R^{2} U_{0}^{2} V_{0}^{2}}=
$$

$$
\frac{R \quad \Delta l+\Delta s+1 \frac{\Delta s}{\Delta l} W_{0}}{R \quad \Delta l+W_{0}} \sqrt{l \quad X^{2} \quad Y^{2}}=Z
$$

wich consists on a verification rule.

The application F is a bijection, should be demonstrate. Considering the cylindrical coordinates we have $\Phi: K \rightarrow C$

$$
u(\rho,, h)=\rho \cos
$$

$(\rho, h) \rightarrow \Phi(\rho,, h)=(u, v, w)$ given by $\quad v(\rho,, h)=\rho \sin$ for $(\rho, h) \in K=[0, R] x[0,2 \pi] x[0, \Delta l]$.

$$
w(\rho,, h)=h
$$

It's easy to see that $\boldsymbol{\Phi}$ is also bijective. We will have finally $F_{0} \Phi: K \rightarrow C^{\prime}$

$$
\begin{aligned}
& F_{0} \Phi: K \rightarrow C^{\prime} \\
& (\rho, o, h)_{\mapsto} F_{0} \Phi(\rho, o, h)=(x, y, z)
\end{aligned} \text { defined by the }
$$ following equations

Figure 1 - The target first of all imposed

Figure 2 - Validation of the geometrical model
We will study now the description of C^{\prime} obtained from some particulars decompositions of C and K under the action F and $\Phi_{0} F$, respectively.

Let be Δ_{1} a decomposition of C into 3-dimensional closed intervals (cubes ?, parallepipedes ?) which have the facettess parallel with the coordinates planes:

$$
\begin{align*}
& x=\left(\begin{array}{ll}
R & \Delta l+h
\end{array}\right) \frac{\rho \cos }{R} \\
& \rho \in[0, R] \\
& y=\left(\begin{array}{lll}
R & \Delta l+h
\end{array}\right) \frac{\rho \sin }{R} \quad \begin{array}{ll}
R & \in[0, R] \\
&
\end{array} \tag{2}\\
& z=R \quad \Delta l+\Delta s+l \quad \frac{\Delta l}{\Delta s} h \quad \frac{l}{R} \sqrt{R^{2} \quad \rho^{2}} \quad h \in[0, \Delta l]
\end{align*}
$$

Figure 3- Decompozition on 3D elements

- The frontal faces $\left(A^{\prime} A B B^{\prime}\right)$ and the back face $\left(D^{\prime} D C C^{\prime}\right)$ are parallels with the coordinates plane $\mathrm{u}=0$, hence we have the equations
of $\left(A^{\prime} A B B^{\prime}\right): u=U_{0}$
of $\left(D^{\prime} D C C^{\prime}\right): u=U_{1}$
- The left face $\left(A^{\prime} A D D^{\prime}\right)$ and the right face $\left(B^{\prime} B C C^{\prime}\right)$ are parallels with the coordinates plane $v=0$, hence we have the equations

$$
\begin{aligned}
& \text { of }\left(A^{\prime} A D D^{\prime}\right): v=V_{0} \\
& \text { of }\left(B^{\prime} B C C^{\prime}\right): v=V_{1}
\end{aligned}
$$

- The bottom face $(A B C D)$ and the top face $\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)$ are parallels with the coordinates plane $\mathrm{w}=0$, hence we have the equations

$$
\begin{aligned}
& \text { of }(A B C D): w=W_{0} \\
& \text { of }\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right): w=W_{1}
\end{aligned}
$$

From the above considerations we have the coordinates of vertices

$$
\begin{align*}
& A\left(U_{0}, V_{0}, W_{0}\right) \quad B\left(U_{0}, V_{1}, W_{0}\right) \quad C\left(U_{1}, V_{1}, W_{0}\right) \quad D\left(U_{1}, V_{0}, W_{0}\right) \\
& A^{\prime}\left(U_{0}, V_{0}, W_{1}\right) \quad B^{\prime}\left(U_{0}, V_{1}, W_{1}\right) \quad C^{\prime}\left(U_{0}, V_{0}, W_{0}\right) \quad D^{\prime}\left(U_{1}, V_{0}, W_{1}\right) \\
& \text { The image of the line }\left[A A^{\prime}\right]: \quad \begin{array}{l}
u=U_{0} \\
v=V_{0} \quad \text { under } \mathrm{F} \text { action: }
\end{array} \\
& w \in\left[W_{0}, W_{1}\right] \\
& x=\left(\begin{array}{ll}
R & \Delta l+w
\end{array}\right) \frac{U_{0}}{R} \\
& y=\left(\begin{array}{ll}
R & \Delta l+w
\end{array}\right) \frac{V_{0}}{R} \tag{3}\\
& z=R \quad \Delta l+\Delta s+1 \quad \frac{\Delta s}{\Delta l} w \frac{l}{R} \sqrt{R^{2} \quad U_{0}^{2} \quad V_{0}^{2}} \\
& \left.\left.\frac{x \quad\left(\begin{array}{ll}
R & \Delta l
\end{array}\right) \frac{U_{0}}{R}}{\frac{U_{0}}{R}}=\frac{y\left(\begin{array}{ll}
R & \Delta l
\end{array}\right) \frac{V_{0}}{R}}{\frac{V_{0}}{R}}=\frac{z}{} \begin{array}{llll}
R & \Delta l+\Delta s
\end{array}\right) \frac{1}{R} \sqrt{R^{2}} \begin{array}{c}
U_{0}^{2} \\
V_{0}^{2}
\end{array}\right]
\end{align*}
$$

which is a line passing throught the point on coordinates:

$$
\left(\begin{array}{ll}
R & \Delta l
\end{array}\right) \frac{U_{0}}{R},\left(\begin{array}{ll}
R & \Delta l
\end{array}\right) \frac{V_{0}}{R},\left(\begin{array}{ll}
R & \Delta l+\Delta s \tag{4}
\end{array}\right) \frac{\sqrt{R^{2} \quad U_{0}^{2} \quad V_{0}^{2}}}{R}
$$

and have the directions $\frac{U_{0}}{R}, \frac{V_{0}}{R}, \quad 1 \frac{\Delta s}{\Delta l} \frac{1}{R} \sqrt{R^{2} \quad U_{0}^{2} \quad V_{0}^{2}}$

> Similary, for the line $\left[B B^{\prime}\right]: \begin{array}{r}u=U_{0} \\ v=V_{l} \\ w \in\left[\begin{array}{l}W_{0}, W_{l}\end{array}\right]\end{array}$ the image under F is the line which passing through the point $\left(\begin{array}{ll}R & \Delta l\end{array}\right) \frac{U_{0}}{R},\left(\begin{array}{ll}R & \Delta l\end{array}\right) \frac{V_{l}}{R},\left(\begin{array}{ll}R & \Delta l+\Delta s\end{array}\right) \frac{\sqrt{R^{2} U_{0}^{2} V_{l}^{2}}}{R} \quad$ and \quad have the \quad $\frac{U_{0}}{R}, \frac{V_{l}}{R}, 1 \frac{\Delta s}{\Delta l} \frac{l}{R} \sqrt{R^{2} U_{0}^{2} V_{l}^{2}}$

- For the line $\left[C C^{\prime}\right]: \begin{gathered}u=U_{1} \\ v=V_{1} \\ w \in\left[W_{0} W_{1}\right]\end{gathered}$ the image under F is the line which passing through the point $\left(\begin{array}{ll}R & \Delta l\end{array}\right) \frac{U_{1}}{R},\left(\begin{array}{ll}R & \Delta l\end{array}\right) \frac{V_{1}}{R},\left(\begin{array}{ll}R & \Delta l+\Delta s\end{array}\right) \frac{\sqrt{R^{2} \quad U_{l}^{2} \quad V_{l}^{2}}}{R}$ and have the directions $\frac{U_{1}}{R}, \frac{V_{1}}{R}, \quad 1 \frac{\Delta s}{\Delta l} * \frac{1}{R} \sqrt{R^{2} U_{l}^{2} V_{l}^{2}}$.

For the line $\left[D D^{\prime}\right] \quad u=U_{1}$

- For the line $\left[D D^{\prime}\right]: \quad v=V_{0}$ the image is the line

$$
w \in\left[W_{0}, W_{1}\right]
$$

$$
\frac{x \quad\left(\begin{array}{ll}
R & \Delta l
\end{array}\right) \frac{U_{1}}{R}}{\frac{U_{1}}{R}}=\frac{y \quad\left(\begin{array}{ll}
R & \Delta l
\end{array}\right) \frac{V_{0}}{R}}{\frac{V_{0}}{R}}=\frac{z\left(\begin{array}{ll}
R & \Delta l+\Delta s \tag{5}
\end{array}\right) \sqrt{\frac{R^{2} U_{1}^{2} V_{0}^{2}}{R}}}{1 \frac{\Delta s}{\Delta l} * \frac{l}{R} \sqrt{R^{2} U_{l}^{2} V_{0}^{2}}}
$$

$$
u=U_{0}
$$

The image of the line $[A B]$:

$$
w=W_{0} \quad \text { under } F \text { is }
$$

$$
v \in\left[V_{0}, V_{l}\right]
$$

$$
x=\left(\begin{array}{ll}
R & \Delta l+W_{0}
\end{array}\right) \frac{U_{0}}{R}
$$

$$
y=\left(\begin{array}{ll}
R & \Delta l+W_{0} \tag{6}
\end{array}\right) \frac{v}{R}
$$

$$
z=R \quad \Delta l+\Delta s+1 \quad \frac{\Delta s}{\Delta l} W_{0} \quad \frac{1}{R} \sqrt{R^{2} U_{0}^{2} v^{2}}
$$

$$
\begin{gather*}
\begin{array}{c}
x=X_{0} \quad(\text { const }) \\
\frac{R_{R 2}}{(R \quad \Delta l+\Delta s)}=v \\
R \quad \Delta l+\Delta s+1 \frac{\Delta s}{\Delta l} W_{0}^{2}
\end{array}=\sqrt{R^{2} \quad U_{0}^{2} v^{2}} \tag{7}\\
\frac{x=X_{0}(\text { const })}{R^{2} z^{2}} \begin{array}{l}
\left(\begin{array}{ll}
R^{2} & \left.\Delta l+W_{0}\right)^{2}
\end{array} \frac{R^{2}}{R \quad \Delta l+\Delta s+1 \frac{\Delta s}{\Delta l} W_{0}^{2}}\right.
\end{array}=R^{2} U_{0}^{2}
\end{gather*}
$$

(8)

$$
\left.\frac{y^{2}}{\left.\frac{\left(R^{2}\right.}{} U_{0}^{2}\right)\left(R \quad \Delta l+W_{0}\right)^{2}} R^{2}+\frac{z^{2}}{\frac{R \Delta l+\Delta s+1}{} \frac{\Delta s}{\Delta l} W_{0}{ }^{2}\left(R^{2} \quad U_{0}^{2}\right.}\right)=1
$$

which is an elipsis in plane $x=\left(\begin{array}{ll}R & \Delta l+W_{0}\end{array}\right) \frac{U_{0}}{R}$ parallel with the coordinate plane $\mathrm{x}=0$.
The image of the line $\left[A^{\prime} B^{\prime}\right]: \begin{aligned} & u=U_{0} \\ & w=W_{1}\end{aligned}$ under F is an ellipsis in the plane $x=\left(\begin{array}{ll}R & \Delta l+W_{1}\end{array}\right) \frac{U_{0}}{R}$ (which is parallel $v \in\left[V_{0}, V_{1}\right]$
with the previous one):

$$
\frac{y^{2}}{\left.\frac{R^{2}}{R^{2}} U_{0}^{2}\right)\left(R \quad \Delta l+W_{1}\right)^{2}}{R^{2}}_{\frac{z^{2}}{R^{2}}+\frac{\Delta l+\Delta s+1 \quad \frac{\Delta s}{\Delta l} W_{1} \quad\left(\begin{array}{ll}
R^{2} & U_{0}^{2} \tag{10}
\end{array}\right)}{R^{2}}}^{=1}
$$

- For the line [CD]: $\begin{aligned} u & =U_{1} \\ w & =W_{0}\end{aligned}$ the image under F is an elipse in the plane $x=\left(\begin{array}{ll}R & \Delta l+W_{0}\end{array}\right) \frac{U_{1}}{R}:$

$$
v \in\left[V_{0}, V_{l}\right]
$$

$$
\frac{y^{2}}{\left.\frac{\left(R^{2}\right.}{} U_{l}^{2}\right)\left(\begin{array}{ll}
\left(R \quad \Delta l+W_{0}\right)^{2} \tag{11}\\
R^{2}
\end{array}+\frac{z^{2}}{R^{2} \quad \Delta l+\Delta s+1 \frac{\Delta s}{\Delta l} W_{0}{ }^{2}\left(R^{2}\right.} U_{l}^{2}\right)}{ }^{\frac{R^{2}}{}}=1
$$

$$
\begin{align*}
& \text { and the image of the line }\left[C^{\prime} D^{\prime}\right]:\left\{\begin{array}{c}
u=U_{1} \\
w=W_{1} \\
v \in\left[V_{0}, V_{1}\right]
\end{array} \text { under } F \text { is an ellipsis in the plane } x=\left(\begin{array}{ll}
R & \Delta l+W_{1}
\end{array}\right) \frac{U_{1}}{R}:\right. \tag{12}
\end{align*}
$$

The image under F of the lines which are parallels with O_{V} coordinate axe are four ellipsises each of them in some different plane parallel with coordinate plane $\mathrm{x}=0$.

2. ANALYSIS OF THE EXPERIMENTS AND RESULTS

Using data colected during earlier researches referring to the deformation process of aluminium alloys parts, under superplastic condition, this theoretical aproaches has been experienced on toolboxes offerred by MATLAB environment.

The analysis by MATLAB Programming Environment has carried out a numerical image of material behavior during superplastic deep gasostatic forming. The interpolation and fitting procedure with an interactive numerical method were used here to study the cross-section varied scene. All observation are made on pole zone and on corner radius zone, i.e. the most exposed zones of the test pieces.

Figure 4 - Using Wavelet Transforms for process analysis

Figure 5 - Statistics of the signal (presure of the air-gasostatic parameter)

3. CONCLUSION

This experiments are done on two main parts: first of all this consists on an unconventional process, that is the gasostatic forming by air pressure blowing of a circular sheet material, and the second one, the experienced of the very unusual signal processing procedure the wavelets transform. The statistics results of the signal processing confirm the behaviour of the technical process parameters. In this ideea, the residuals (see figure no. 5) are on limits imposed by the process, and the decomposition of the signal by Daubechies wavelet transform (db 7 of level 5) depicted on figure 4, shows the behaviour of the parameter- air presurre into the limits of theoretical study.

REFERENCES

[1] Grebenişan, G., Mureşan, S.-Volumic generation mathematical model and experimental observation, International Conference on Materials Science \& Engineering - BRAMAT 2005, Braşov, 2005.
[2] Grebenişan, G- Metoda deformațiilor mici în analiza cu elemente finite a deformării volumice, Sesiunea anuală de comunicări ştiințifice, cu participare internațională, pp. 107-120, Oradea, 2001.
[3] Grebenişan, G. -Researches of superplastic deformation by the application on gaso-static deep drawing, PhD thesis, Cluj Napoca, 2003.
[4] Pilling, J. -Superplasticity in crystalline solids, The Institute of Metals, London, 1989.

