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Abstract:Based on recently authors’ works, [1], this paper, consists on an extension of volumes generation 

mathematical model, and are focused on a step by step procedure of volume generation. Main part of the paper are 

focussed on mathematical model of the evolution process, in a deformation process, and additional procedure it is used 

in order to open new means of appropriate procedure of signal processing. In this work, signal processing is used as 

another clearly and soft way of evolution process study. The file used by MATLAB wavelet transform it is the matrix 
results of experimental work, in order to obtain the blow-up parts. 
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1. INTRODUCTION OF THE METHOD 
 

This work describes, detailed, the theoretical study of the mathematical application 
'

: CCF → , 

( ) ( )zyxwvuF ,,,, = , which is the evolution application, given by: 
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where 2
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2
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2
u ≤+  and [ ] l∆  ,0 w∈ , are the parametric equations of volume C, [1]. 

 First of all, if exists ( )1w,1v,1u  and ( )2w,2v,2u  in C such that ( ) ( )2w,2v,2uF1w,1v,1uF =  then, it’s 

obviously from definition of F, that ( )2w1w,2v1v,2u1u ===  which verify injectivity of F. 

 Now we consider ( )Z,Y,XP  a point in 
'C , which means that will exist an unique [ ]l∆,00W ∈  with 
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Choosing ( ) ( )0Wl∆R
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=  we verify that ( ) P0W,0V,0UF ≡ . 

 

1.1. Conditions on parameters 0W,0V,0U   

We know that [ ]l∆,00W ∈  and using (1) we’ll obtain 
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1.2. Equation which define the application F 

For 0Wand0V,0U  considered bove we obtain by (1’) and (1) 
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wich consists on a verification rule.  

The application F is a bijection, should be demonstrate. Considering the cylindrical coordinates we have 

( ) ( ) ( )w,v,uh,,ρΦh,,ρ
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for ( ) [ ] [ ] [ ]l∆,0xπ2,0xR,0Kh,,ρ =∈ . 

It’s easy to see that Φ is also bijective. We will have finally 
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Figure 1 – The target first of all imposed 

 

     
 

 
Figure 2 – Validation of the geometrical model 

We will study now the description of 
'C  obtained from some particulars decompositions of C and K under the 

action F and F0Φ , respectively. 

Let be 1∆  a decomposition of C into 3-dimensional closed intervals (cubes ?, parallepipedes ?) which have the 

facettess parallel with the coordinates planes: 
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Figure  3- Decompozition on 3D elements 

• The frontal faces 




 ''ABBA  and the back face ( )'DCC'D  are parallels with the coordinates plane u=0, hence we 

have the equations 

of ( ) 0Uu:
'

ABB
'
A =  

of ( ) 1Uu:
'

DCC
'
D =  

• The left face ( )'ADD'A  and the right face ( )'BCC'B  are parallels with the coordinates plane v=0, hence we have 

the equations  

of ( ) 0Vv:
'
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A =  

of ( ) 1Vv:
'
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B =  

• The bottom  face ( )ABCD and the top face ( )'D'C'B'A  are parallels with the coordinates plane w=0, hence we 

have the equations 

of ( ) 0Ww:ABCD =  

of ( ) 1Ww:
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From the above considerations we have the coordinates of vertices  
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which is a line passing throught the point on coordinates: 
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Similary, for the line [ ]
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which is an elipsis in plane ( )
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and the image of the line 
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The image under F of the lines which are parallels with vO  coordinate axe are four ellipsises each of them in some 

different plane parallel with coordinate plane x=0. 

 

 

2. ANALYSIS  OF  THE  EXPERIMENTS AND RESULTS 

 

Using data colected during earlier researches referring to the deformation process of aluminium alloys parts, under 

superplastic condition, this theoretical aproaches has been experienced on toolboxes offerred by MATLAB 

environment. 

 The analysis by MATLAB Programming Environment has carried out a numerical image of material behavior 

during superplastic deep gasostatic forming. The interpolation and fitting procedure with an interactive numerical 

method were used here to study the cross-section varied scene. All observation are made on pole zone and on corner 

radius zone, i.e. the most exposed zones of the test pieces.  
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Figure 4 – Using Wavelet Transforms for process analysis 

 

 
Figure 5 – Statistics of the signal (presure of the air-gasostatic parameter) 

 

 

3. CONCLUSION 

 

This experiments are done on two main parts: first of all this consists on an unconventional process, that is the 

gasostatic forming by air pressure blowing of a circular sheet material, and the second one, the experienced of the very 

unusual signal processing procedure the wavelets transform. The statistics results of the signal processing confirm the 

behaviour of the technical process parameters. In this ideea, the residuals (see figure no. 5) are on limits imposed by the 

process, and the decomposition of the signal by Daubechies wavelet transform (db 7 of level 5) depicted on figure 4, 

shows the behaviour of the parameter- air presurre into the limits of theoretical study. 
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