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Abstract: In this note, we will present some considerations about a solution of Couette flow using the pressure correction 

technique. This gives us the opportunity to examine the behavior of the pressure correction method to an incompressible flow 

problem. 

 
 
1. INTRODUCTION 
 
The incompressible Couette flow represents an exact analytical solution of the Navier-Stokes equations. Couette 
flow is perhaps the simplest of all viscous flow, while at the same time retaining much of the same psyhical 
characteristics of a more complicated boundary layer-flow. 
During this paper, we’ll deal with the two-dimensional Navier-Stokes equations for incompressible flow and set 
up a solution of these for the incompressible flow between two parallel plates in relative motion to each other 
using the pressure correction method. This method is an iterative approach and we’ll set un the initial condition 
to be a two-dimensional flow field. 
 
 
2. THE PSYHICAL PROBLEM A BRIEFLY PRESENTATION 
 
Couette flow is defined as follows. 
Let us consider the viscous flow between two parallel plates separated by the vertical distance D. 

The upper plate is moving at the velocity eu  and the lower plate is stationary ( i.e. the velocity is 0≡u ). 

The flow in the xy  plane is sketched in Fig.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
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The flow field between the two plates is driven exclusively by the shear stress exerted on the fluid by the moving 

upper plate, resulting in a velocity profile across the flow, ( )yuu = , as sketched in Fig.1. 

Since there is no beginning or end of this flow, the flow-field variables must be independent of x  (i.e. 0≡
∂
⋅∂
x

 

for all quantities). 
Another physical characteristic is that there’s no vertical component of velocity anywhere; this states that the 
stream lines for Couette flow are straight, parallel stream-lines. 
For Couette flow, there are no pressure gradients  in either the x  or y  direction. 

With these previous remarks and using the x - (resp. −y ) momentum equation, we obtain the governing 

equation for incompressible, constant-temperature Couette flow: 

     0
2

2

=
∂

∂

y

u
                                                                                                                                                       (1)                              

Integrating twice with respect to y , we have the exact analytical solution: 

     21 cycu +=                                                                                                                                                 (2) 

(where 21 ,cc are constants of integration).                                                                           

We find their values by appling the boundary conditions: 
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Thes,  
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=                                                                                                                                                        (4) 

represents the exact analytical solution for the velocity profile for incompressible Couette flow (which is a linear 
profile). 
 
 
3. SOME COMMENTS ABOUT THE PHILOSOPHY OF THE PRESSURE CORRECTION 

METHOD 
 
The pressure correction technique has been developed for practical engineering solutions by Patankar and 
Spalding and it is embodied in an algorithm called S I M P L E (semi-implicit method for pressure-linked 
equation), which has found widespread application for both compressible and incompressible flows. 
This technique is basically an iterative approach, where some innovative physical reasoning is used to construct 
the next iteration from the results of the previous iteration. 
The thought process is as follows: 

1. Start the iterative process by guessing the pressure field; denote the guessed pressure by ∗p . 

2. From the momentum equations, using the values of ∗p , solve for wvu ,, . Since these velocities 

are those associated with the values of ∗p , denote them by ∗∗∗ wvu ,, . 

3. Using the continuity equation, construct a pressure correction p′  i.e.  

                    ppp ′+= ∗                                                                                                                                 (5) 

(so we obtain the velocity field more into agreement with the continuity equation). Corresponding 

velocities corrections (obtained from p′ ) are: wvu ′′′ ,,  such that: 

      wvuuu ′+=′+=′+= ∗∗∗ w  w,v  v,                                                                                (6) 

4.In Eq.5, designate the new value p on the left side as the new value of ∗p . 

Return to step 2 and repeat the process until a velocity field is found does satisfy the continuity equation. When 
this is achieved, the correct flow field is at hand. 
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4. THE PRESSURE CORRECTION METHOD FOR THE COUETTE FLOW 
 
Now we apply the pressure correction method to the solution of the incompressible, viscous flow between two 
parallel plates as in Fig.1. Although the plates are theoretically infinite in extent, the computational domain is 
finite with length, L  and height D . 
Let us consider 5,0=L  and 01,0=D . 

The fluid is air at standard sea level conditions with a density 002377,0=g . 

We consider the case of a low velocity (we set 1=eu ) and there’s no doubt that the flow is incompressible, in 

this case. The Reynolds number for this case is 6,63 . 

Based on the reasons from the general case, we choose a staggered grid (with 3 systems of grid points: the solid 
points are where p  is calculated, the open points, where u  is calculated and the points denoted by x , where v  

is calculated), as in the following figure: 
   

 
Figure 2 

 
Note that the “ p points” run from 1 to 21 in the x  direction, from 1 to 11 in the y direction; the “u  points” 

from 1 to 22 in the x  direction, from 1 to 11 in the y direction; the “ v  points” from 1 to 23 in the x  direction 

and from 1 to 12 in the y direction. 

Now, we need, as this method is an iterative method, initial conditions for the flow variables in order to start the 
iterative process. The choice is arbitrary. 
For the present case, we set: 

     pointsinterior  allfor   0  ,0 =′=== ∗ ppvu                                                                                                  (7) 

except for point ( ) ( )5,15, =ji , where 5,0=v . 

The boundary values are: 

     

boundary flowout  at the -          0

boundary flowin  at the -00

lower wall at the -                0

upper wall at the -         0  ,

=′

==′

==

==

p

 v  ,p

vu

 vuu e

                                                                                                          (8) 

Step 1: Guess at value of ∗p  at all interior grid points. Also, arbitrarily set values of  ( )nu ∗ρ  and ( )nv∗ρ  at all 

the appropriate grid points. 

0,, ≡∗∗∗ vup ρρ  for the beginning of the iterative process; 1=eu  at the upper wall; 5,05,15 =∗v  at the 

velocity spike (to produce a two-dimensional flow during the iterative process). 
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Step 2: Determine ( ) 1+∗ n
uρ  and ( ) 1+∗ n

vρ . 

We use the pressure grid point ( )3,3 , as a focus. 

From the general case, we obtain: 
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After ( )∗uρ  and ( )∗vρ  are obtained for all the interior grid points, by dividing these values by ρ , we obtain 
∗u  and ∗v . 

At the inflow boundary, 

     ( ) juu jj ∀= ∗∗   ,,2,1                                                                                                                                        (15) 

     ( ) jvvuu jjjj ∀== ∗∗∗∗
,22,23,21,22   ,                                                                                                                (16) 

In the above equations, 

     001,0    ,001,0
10

01,0
    ,025,0

20

5,0
=∆==∆==∆ tyx                                                                     (17) 

(The value of t∆  was chosen somewhat arbitrarily; t∆  plays the role of the “relaxation factor”; the value 
chosen was consider to be acceptable for this calculation) 
Step 3: Solve for p′ from the pressure correction formula focusing on the pressure grid point (3,3): 

     ( )dpcpcpbpb
a

p +′+′+′+′−=′ 2,34,33,23,43,3

1
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Note that eq. like (18) are solved for jip ,′  at every interior grid point using a relaxation technique. (In this case, 

there are over 200 relaxation steps necessarily that the values of jip ,  have converged). 
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Step 4: calculate 1+np  at all internal grid points, from: 

     ( ) ppp p

n

ji

n

ji
′+= ∗+ α,

1
,                                                                                                                              (20) 

where pα  constitutes an underrelaxation factor. We chose 1,0=pα . 

Step 5: Designate the value of 1
,
+n

jip  (obtained from the Step 4) as the new values of ( )np∗ . 

Return to Step 2 and repeat Step 2 to Step 5 until convergence is achieved. 
(It takes over 300 iterations in the present case). 
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