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Abstract: The paper presents an analytical method for the solution of the problem of a fixed matrix heat exchanger with axial 

heat conduction within the matrix. The small parameter method and Laplace transform have been applied. A general solution 

has been obtained for the unsteady state in the form of function series, using single and double convolutions of functions, as 
well as a particular solution for both the uniform and non-uniform initial temperature of the matrix and for an arbitrary 

function of the fluid temperature at the inlet. Particular solutions have been used in the study of the matrix dynamics in 

determining dynamic characteristics for the standard input signals in the form of: Dirac δ pulse, Heaviside function and the 
function of sinusoidal variable temperature of the fluid at the inlet. The results obtained both illustrate and enable the 

assessment of the effect of axial heat conduction in the matrix on the dynamic properties of the heat exchanger. 
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1 INTRODUCTION 
 

The development of the theory of mathematical modeling of matrix heat exchangers has progressed in two 

parallel directions, with the use of either numerical or analytical methods. The development of the numerical 

methods and computer technology, made it possible to solve even very complex mathematical models of matrix 

heat exchangers, including the non-linear ones. 

Analytical methods, on the other hand, allow for more thorough physical interpretation of the process, are more 

useful in the control and automatic control theory, and the solutions they offer are usually more convenient in 

terms of application. A matrix heat exchanger used in air-conditioning systems is usually an element with the 

greatest inertia, and hence having a significant effect on the entire system dynamics.  

Thorough investigation of the dynamic properties of the matrix heat exchanger makes it possible to find an 

analytical solution of its model based on an integer transform. The solution, in turn, makes it possible to 

determine dynamic characteristics, the order of inertia, time constant and operator transmittance-for the step 

change of the function of fluid temperature at the inlet and the spectrum transmittance-for periodically variable 

function of temperature of the fluid at the inlet. An effective analytical solution of a matrix heat exchanger is 

also most beneficial in a simulation model of an air-conditioning system using a heat exchanger of this type. This 

paper presents an alternative and more general analytical method of solving the matrix heat exchanger problem 

taking into account the effect of longitudinal heat conduction in the matrix for fixed exchanger, non-uniform 

initial temperature of the matrix and an arbitrary function of the temperature of fluid at the inlet. The Laplace 

transform and one of the small parameter methods have been used. The particular results obtained have been 

used to study the dynamics of the matrix type heat exchanger. 

 

 

2. THE FORM OF THE PROBLEM 
 

The fluid and the matrix of a heat exchanger form two separate thermodynamic systems, an open and a closed 

one, respectively. To each of these systems the general energy balance equation applies. For the open system it 

has the form: 
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while for the closed system, it is assumed that 0=w
r

. 

As a geometrical model of the matrix the spatial regular Brenner’s model has been adopted, in which the matrix 

is treated as a pseudohomogenous medium with a specified porosity ε, specific surface of heat exchange S and 
adequately defined physical constants. 

Porosity of the matrix is determined by the following equation: 
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and it denotes a proportion of the free space filled with fluid in the total matrix volume, while the specific 

surface of heat exchange is defined by the following relationship: 

cdV

dA
S =                             (3) 

and it denotes the surface area of heat exchange per unit of the total matrix volume. Using the general balance of 

energy Eq. 1 and the adopted geometrical model of the matrix, and taking into account that for the matrix ws = 0, 

0=τDDp , and 0=Φ v , one obtains the following general system of equations of the balance of energy for 

the fluid and the matrix: 
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The equations are coupled through the term of convective heat exchange, which can be interpreted also as an 

internal heat source. In further considerations the computational model of the matrix heat exchanger depicted in 

Fig. 1 and the following assumptions have been adopted, [1], [3]: 

(a) the matrix is treated as a homogenous medium with a specified porosity; 

(b) both the fluid and matrix temperatures are only a function of the geometrical coordinate in the direction of 

the fluid flow and time; 

(c) the heat exchange between the fluid and the matrix takes place by convection (influence of radiation may be 

taken into account through modification of the convective heat-transfer coefficient); 

(d) coefficients and numbers characterizing the heat exchange process are the same in volume and constant in 

time; 

(e) thermophysical properties of the fluid and the matrix are the same in volume and constant in time; 

(f) the velocity of the fluid flow through the matrix is the same in the cross-section and longitudinally and 

constant in time; 

(g) the process is isobaric; 

(h) there are no heat losses to the environment; 

(i) dissipation of kinetic energy in the fluid is considered negligible; 

(j) accumulation and conduction of heat in the fluid are considered negligible (justified when fluid is, e.g., air). 

 
Figure1. Computational model of a matrix heat exchanger 
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Taking into account the above assumptions the system of the energy balance equations (4) and (5) for the fluid 

and matrix is simplified as follows [5], [7]: 
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Equations 6 and 7 are supplemented with the following initial and boundary conditions: 

0=τ , ( ) ( )xtxt os =0, ,                        (8) 
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where ( )τit  denotes the function of temperature of the fluid at the inlet. The boundary condition (9) denotes the 

equality of the change of convective transfer stream on the boundary surface x=0 and the convective exchange 

stream, condition (10) is a type 3 boundary condition for the boundary surface x = 0, while relation (11) 

combines both conditions analogous to the aforementioned ones but for x = L and it has come to existence as a 

result of elimination of the unknown of fluid temperature at the inlet from these equations [6]. 

For generality of the solutions the following dimensionless parameters have been introduced: 

– dimensionless coordinates: 
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– dimensionless temperatures: 
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where: tfmin, tfmax denote the minimum and maximum temperature of the fluid in the fluid–matrix system, 

respectively. 

As a consequence of the introduction of dimensionless parameters the following dimensionless numbers are 

obtained: 
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where parameter Λ denotes a dimensionless length of the matrix, while parameter Ks is a measure of the 

longitudinal heat conduction in the matrix. 

Introduction of dimensionless parameters (12)–(16) to Eqs. 6, 7, 8, 9, 10 and 11 leads to the following 

dimensionless form of the problem: 

– a system of the energy balance equations 
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– initial and boundary conditions 
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In a particular case, when heat penetration in boundary surfaces is neglected, which is admissible taking into 

account the fact that these surfaces constitute only an insignificant proportion of the total surface of heat 

exchange in the matrix, the boundary conditions (20)–(22) at 00 =α , and hence 00 =Bi  and 0=H , become 

simplified to: 
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The system of Eqs. 17 and 18 taking into account longitudinal heat conduction in the matrix, with the initial 

condition (19) and adiabatic boundary conditions (25)–(27) is a subject of the solution. It is a model describing a 

one-off process in which the matrix accumulates energy (charging) or undergoes a reverse process (discharging). 

 

 

3 THE SOLVING METHOD 
 

In solving the problem (17)–(19), (25)–(27) it has been assumed that parameter Ks described by the formula (16), 

present in the energy balance equation for the matrix (18), and taking into account longitudinal heat conduction 

in the matrix is a small parameter. This assumption is correct for real matrix type heat exchangers used in air 

conditioning systems using air as fluid-then Ks < 1. Therefore, in order to solve the boundary problem under 

analysis one of the small parameter methods [5] has been utilized. A solution is sought to the system of Eqs. 17 

and 18 in the form of the following series: 
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As a result, functions ( )ηξ ,fnT  and ( )ηξ ,snT  are defined, solving successively the following systems of 

equations with initial and boundary conditions, obtained following the substitution of the series (28) and (29) 

into the Eqs. 17, 18, 19, 25, 26 and 27 and after comparing the terms at the successive powers Ks: 
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-for n=1, 2, 3… 
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The solution is an iteration, since subsequent terms of the series (28) and (29) are determined one after another. 

Thus, the solution of the boundary value problem of the second order is reduced to solving a number of classical 

problems of the first order, and while for n = 0 the problem contains a heterogeneity in the boundary conditions, 

and the system of equations is homogenous, for n = 1,2,3,... the situation is reverse. At this point it needs to be 

said that-as a result of the method employed-the solution obtained neglects boundary conditions (26) and (27) 

related to the matrix temperature gradient as redundant for first-order differential equations, therefore the 

solution will not be accurate for 0⇒ξ  and 0⇒η . 

The problem (30)–(33) is a classical problem, which is solved with the Laplace transform method, successively 

according to variables ξ and η.  
The problem (34)–(37) is also solved by the Laplace transform method, successively according to variables ξ 
and η. 
 

 

CONCLUSION 
 

The method of the solution of a matrix heat exchanger taking into account the axial heat conduction in the matrix 

presented in this paper is highly accurate and requires only a short time for computations. The analytical nature 

of the solution enables a wide range of applications. This refers in particular to the studies of dynamic properties 

of matrix heat exchangers and the assessment of the effect of axial heat conduction in the matrix on the changes 

in the temperatures of the fluid and the matrix, which is of particular importance especially in the case of metal 

matrices. Further applications include the use of the solution presented as a constituent element of a 

mathematical model of a rotary energy regenerator and a cyclic regenerator, as well as for simulation of the 

operation of air conditioning systems with matrix type heat exchangers. 
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