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Abstract: A high order multi-degree-of-freedom model involving many suspension parameters is typically required in order to 

analyze the influence of suspension design on all the performance functions.This paper utilized approximate decoupling to obtain 

simple single degree of freedom models from a high order automotive suspension model. Each simple model involved a small number 

of parameters and enabled easy analysis of the performance of some suspension functions. The most commonly used indexes for ride 

comfort and road handling are analyzed for judge the effectiveness of the suspension. 

Keywords:  suspension, control, ride quality, road holding  

 

 

1. INTRODUCTION  
 

Two important suspension performance metrics considered in the literature are passenger comfort and suspension 

deflection, i.e., the relative displacement between the car body and wheel assembly. It is widely accepted that lower 

vertical acceleration levels correspond to increased comfort. Structural features of a vehicle place a hard limit on the 

amount of suspension deflection available to reduce the car body acceleration. Hence, the goal in designing vehicle 

suspensions is to minimize car body acceleration, subject to the hard constraint on available suspension deflection.  

In general, ride comfort, road handling, and stability are the most important factors in evaluating suspension 

performance. The main concern in suspension design and control is the fact that currently, achieving improvement in 

these three objectives poses a challenge because these objectives will likely conflict with each other in the vehicle 

operating domain [1], [3], [4]. 

A high order multi-degree-of-freedom model involving many suspension parameters is typically required in order to 

analyze the influence of suspension design on all the performance functions.  

In this paper using approximate decoupling we obtain simple single degree of freedom models from a high order 

automotive suspension model. Each simple model involved a small number of parameters and enabled easy analysis of 

the performance of some suspension functions. 

 

 

2. DYNAMICAL MODEL AND PERFORMANCE INDEXES 
 

2.1 Dinamical model 
 

Since many of the proposed electronic suspension being considered today are independent, i.e. using local sensor 

information and control law, the quarter car model show in Fig. 1 has been considered in this paper. 

We used the following notation: mus is the equivalent unsprung mass consisting of the wheel and its moving parts; ms  is 

the sprung mass, i.e., the part of the whole body mass and the load mass pertaining to only one wheel; kt is the elastic 

constant of the tire, whose damping characteristics have been neglected.  

The state component x1(t) is the deformation of the suspension with respect to (wrt) the static equilibrium configuration, 

taken as positive when elongating; x2(t) is the vertical absolute velocity of the sprung mass ms.  

The state component x3(t) is the deformation of the tire wrt the static equilibrium configuration, taken as positive when 

elongating.  

The state component x4(t) is the vertical absolute velocity of the unsprung mass mu; u(t) is the control force produced by 

the actuator.  

The signal x0(t) represents the disturbance, it coincides with the absolute vertical velocity of the point of contact of the 

tire with the road.  
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Figure 1: Quarter car model 

 

 

If assume that the tire does not leave the ground, the liniarized equations of the motion are  
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uDxDKCM r 21 +=++ xxx &&&  (2) 

 

The parameter values are taken from reference [2] and are listed in Table 1. 

 

Tabel 1: numerical parameter 

Kgms 240=  Kgmu 36=  

mNcs sec/1000 ⋅=  0=tc  

mNk s /16000=  mNk t /160000=  

 

 

2.2 Suspension performance and tradeoffs 

 

The purpose of this paragraph is to point out that are some inherent performance limitation for any suspension that 

acting between two sprung masses. The principal source of discomfort for the driver is the acceleration transmissibility 

η, or ride comfort index   [2], [4]. In order to improve passenger confort the acceleration transfer function   
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from the road disturbance to the car body acceleration should be small in the frequency range from 0 – 70 rad/s.   

 In (3)  d(s) is characteristic polynom. 

At the same time it is necessary to ensure that the transfer function  )(sH RS  from the road disturbance to the 

suspension deflections, rattle space transfer function [nic] 
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is small enough to ensure that even very rough road profiles do not cause the deflection limits to be reached.  As shown 

in [ 3] the acceleration transfer function )(sH A  has an invariant point at ut mk=1ω . For the parameter value listed 
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in Table 1, srad /6,561 =ω . Similarly, the suspension deflection transfer function )(sH RS has a zero at the rattle 

space frequency, )(2 sut mmk +=ω . For the parameter value listed in Table 1, srad /06,242 =ω .  

The tradeoff between passenger comfort and suspension deflection is captured by the fact that is not possible to 

simultaneously keep both the above transfer functions small around the tyrehop frequency and in the low-frequency 

range. In [2] it is shown that a small reduction in )(sH A  at low frequencies and in the vicinity of the tyrehop frequency 

results in a large increase in )(sH RS at these frequencies and vice versa. 

 

3. REDUCED MODELS 
 

This paper utilized approximate decoupling to obtain simple single degree of freedom models from a high order 

automotive suspension model. Each simple model involved a small number of parameters and enabled easy analysis of 

the performance of some suspension functions. 

In order to study the effects of specific suspension parameters on the suspension performance, we calculate the natural 

frequencies and mode shapes of the suspension system and then transform to a new set of coordinates in which the two 

equations of motion are approximately decoupled. For the particular case where the tire stiffness is much higher than 

the suspension stiffness, we make the approximations [4] tstts kkkkk ≈−≈+ which then results in the natural 

frequencies 

 

ut2ss1 m/k,mk =ω=ω
 

 (5) 

 

Let ][ )2()1( pp=P  the mass normalized modal matrix. The following change of coordinates 
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results in decoupled equations of motion in the new modal coordinates 

 

01
TT xDPCPP =+Λ+ ηηη &&&

 
 (7) 

 

In the case of passive suspension system, for numerical parameter listed in Table 1 he two new decoupled coordinates 

can therefore be approximated by 

 

s1 x4.15−=η  for  us xx ≥
 

(8) 

 

u2 x9.5−=η  for  su xx ≥
 

(9) 

 
The two approximate decoupled equations are: 

a) sprung mass mode approximation for us xx >>  
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(11) 

 

b) unsprung mass mode approximation for 
tu

xx >> , 

 

0tutusuu xkxkxcxm =++ &&&   (12) 

 

For judge effectiveness of the suspension system we are looking at the approximate transfer function:  

• acceleration transfer function 
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• rattle space transfer function 
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The tire deflection transfer function in this case can be approximate by 
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To evaluate the accuracy of the approximate transfer functions of equations (13) and (15), Figures 2 and 3 show a 

comparison between the original and approximate transfer functions. It is clear that the approximate transfer function 

(13) matches the original transfer function (16) well for frequency range 1ω<ω  and the approximate transfer function 

(15) matches the original transfer function 00uTD x/)xx()s(H &−=  well for the frequency range 25.0 ω>ω . 
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Figure2. Bode for HA(s) sprung mass approximate mode      Figure 3 Bode for HTD(s) unsprung mass approximate mode 

 

By inspection of the simple second order transfer functions in equations (13) and (14) above, it is clear that changes in 

the suspension stiffness ks, and in the suspension damping cs, will lead to the changes in the transfer function HA (s) and 

H RS (s). A softer suspension (lower ks) leads to an improvement in ride quality by reducing the first resonant frequency 

and hence causing the roll-off in the transfer function HA(s) to start at a lower frequency. An increase in suspension 

damping cs, reduces or eliminates the resonant peak corresponding to the sprung mass natural frequency. Thus the ride 

quality transfer function HA(s) will be significantly improved at the sprung mass frequency. However, due to the impact 

of cs, on the numerator in equation (13), the higher damping introduces high frequency harshness in HA (s) by causing a 

slower roll-off. 

The increase in suspension damping will have no detrimental effects on the suspension deflection transfer function 

HRS(s). By examining the simple second order transfer function in equation (14), it is clear that an increase in tire 

stiffness reduces tire deflection by reducing the low frequency asymptote of HTD(s). 

 

4. CONCLUSION 
 

Using the approximately decoupled models, the following conclusions on suspension design were obtained: 

1. Decreasing suspension stiffness improves ride quality and road holding. However, it increases rattle space 

requirements. 

2. Increased suspension damping reduces resonant vibrations at the sprung mass frequency. However, it also results in 

increased high frequency harshness. 

3. Increased tire stiffness provides better road holding but leads to harsher ride at frequencies above the unsprung 

mass frequency. 
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