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Abstract : The variation of stress during creep convergence of a horizontal circular galleries excavated in rock salt is studied. 

Examples are given for rock salt by N. Cristescu ([1], [2]).  A non-associated elasto-viscoplastic constitutive equation is used to 

describe both compressibility and/or dilatancy during transient and steady-state creep, as well as evolutive damage possibly leading 

to failure.  An in-house FEM numerical method and iterative method is used for this purpose ([4], [6]). The variation in time of 

radial convergence of the galleries walls and of the stress state will be illustrated by several figures. The significance of these 

variations for long-term stability is discussed. Numerical results are obtained using MATLAB ([8], [9]). 

Keywords:  elastic-viscoplastic model, rock mechanics, numerical methods. 

  

 

1. INTRODUCTION  

 
Study of stress  distribution  during creep of the rock  surronding a circular horizontal  tunnel is a very important 

problem, mainly for mining engineering. At big depths, an opening excavated in rock can close completely after time 

intervals which are of the order of several tens of years. For the design of underground cavities one must be able to 

predict quite accurately not only the stress and strain distribution around them, but also the apperance and possibly slow 

spreading in time of a microcraked domain produced just by the excavation. Since the microcraking is related to 

dilatancy, the irreversible volumetric changes, either dilatancy or compressibility have started to be studied too. If the 

stress is in the dilatancy domain damage by microcraking can develop steadily in time, ultimately leading  to a major 

underground failure. That is why it is important to study the stress variation during creep when microcraks are also 

developing. 

In this paper we study the distribution of stresses, deformations and displacement around a circular cylindrical gallery.  

We tried to determine a numerical solution without using hypothesis that stress state remains constant in time as in case 

of  simplified solution. For numerical solution we used the scheme proposed by Paraschiv-Munteanu ([3], [4], [5])  

using finit element method for spatial integration and a complet implicit method for integration in time. In most cases 

we observed that in proximity of underground opening the stress becomes relaxed relatively to the moment of 

excavation. However, for short period of time the creep solution and the numerical solution are very close. 

The elasto-viscoplastic model that we consider in this paper is described by equation  
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where K andG are elastic moduls, Tk  and Sk  are viscosity constants, H is the plasticity function, F is the viscoplastic 

potential for transitory creep, S is the viscoplastic potential for stationary creep. The constitutive equation (1) can 

describe the following mechanical properties exhibited by most rocks: transitory and stationary creep, work-hardening 

during transient creep, volumetric compressibility and/or dilatancy, as well as short-term failure. All these properties are 

incorporated into the constitutive equation via the procedure used to determine the constitutive functions (Cristescu  [1], 

[2], Cristescu and Hunche [3]). 

 

 

2. PROBLEM FORMULATION 
 

The stress distribution just after excavation is obtained by exact elastic solution. Let a  the initial radius of the cavity 

and ∈m N , 50 ≥≥ mm , number of radius which defined the limits of the domain, )2,0[],[ π×=Ω maa . We assume 

that in all horizontal directions the primary stresses are the same, hσ , and the depth is sufficient great to consider that 
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vσ , the vertical initial (primary) stress, is not variable in the domain Ω  ( hσ corresponds for the axis of the tunnel). The 

conditions for ∞→r (in case of infinitely domain) has been considered on the external boundary of the domain Ω . 
 

Proposition 1. If on the walls of the cavity, ( ){ })2,0[,
1

πθθ ∈=Γ a , a pressure p  is acting (due to various reasons 

and which may be constant or variable): 

     )2,0[,0),(,),( πθθθσθσ ∈∀== aS
rpaS

rr                  (2) 

and on the external boundary of the domain Ω , ( ){ })2,0[,
2

πθθ ∈=Γ ma , we have: 
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then the stress state just after excavation is: 
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where 222211 ,,,,, DCBACA  are constants : 
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Proof. The components of stress are obtained from equilibrum equation using the Airy function and the constants result 

from conditions (2) and (3).  ■ 

 

From (4) it is easy to obtain: 

 

Proposition 2. The components of deformation corresponding stress state (5) are: 
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and the components of the displacement are: 
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Observation. It is easy to observe that in the case of infinitely domain, when ∞→m , the stress, deformation and 

displacement components are the same like in papers of Cristescu  and Paraschiv ([3], [4]), because, when ∞→m , we 

have: 
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So, this result proves in one way that taking 50 ≥≥ mm  it is acceptable for moving the infinitely condition on the 

boundary mar = . 

Elastic solution is used as initial data for the integration in long time intervals using finite elements methods.  The 

general formulation of the problem of determination the stress distribution around a circular horizontal tunnel in elasto-

viscoplastic rock, like a cvasistatic problem, is: 

 

find the displacement function ( ):u,
r

u θ  2
RR →×+ Ω , the stress function  :σσσσ 3

SR →×+ Ω and the irreversible 

stress work function :
I

W RR →×+ Ω  such that: 
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where σσσσ~  and )~,~( θuur  are the stress and, respectively, the displacement corresponding for the moment of excavation 
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3. THE NUMERICAL APPROACH  
 

For the problem (7)-(11) we determine a numerical solution based on some results presented by Rosca and Sofonea [7] 

using a complete implicit method for integration in time (see Paraschiv-Munteanu [5]). 

 

If ),,( IR Wu σσσσ , where  ),( θuuu r= ,  is the solution of the problem (7)-(11) then we determine: 

       ,,~
RR

uuu σσσσσσσσσσσσ −=−=                                                         (12) 

such that 

      )2,0[,0,0),,( πθθ ∈>∀= tmatu       

      Div Rσσσσ 0)),(,( =θrt        in       Ω×+R                                                                                   (13) 

    σσσσ )),(,( θat on =   )2,0[,0, πθ ∈>∀ t . 

So, we have to solve the problem: 

 

find the displacement function :u  2RR →×+ Ω , the stress function  :σσσσ 3
SR →×+ Ω and the irreversible stress 

work function :
I

W RR →×+ Ω  such that: 
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In order to determine a numerical approach of the solution of the problem (14)-(16) we consider an interval 

0],,0[ >TT . Let us note   
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From (13) result that the solution ),,(
I
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For numerical solution we use the scheme proposed by Paraschiv-Munteanu ([5]) using finite elements methods for 

spatial integration and a complet implicit method for integration in time. For short period of time the creep solution and 

the numerical solution are very close. Thus deformation by creep and stress variation can simultaneously be described.  

The similar results for deep boreholes are obtained in papers [5] and [6].  
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