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Abstract : In this paper we shall present a four degrees of freedom model for a half of an automobile. The suspensions consist of
linear and non-linear elements, the non-linear being of neo-Hookean type. For this model we obtain the equations of motion, the
equilibrium positions and we study the stability of the equilibrium positions. Finally, a numerical example is also presented.
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1. MATHEMATICAL MODEL

We shall now present the study of the motion for four degrees of freedom system that models a half of an automobile.
The model is presented in figure 1. This model consists of the masses m; and m,, which mark the wheels of the
automobile, masses linked to the ground by linear elastic springs of stiffness k, and &, , respectively. By wheels is
attached the chassis marked by the bar 4B of mass M . The linking of the chassis is made by the non-linear neo—
Hookean elastic elements by elastic stiffness d,, e, respectively d,, e,. The elastic force that appears in such

element is given by

¢
F=dz —g, 1)

where [ = l,_2, z; marks the elongation of the respective element,and d; > 0, e, >0, i =12.
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Fig. 10: The mathematical model
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The four degrees of freedom of the system were selected as follows: ¢q,, g, the elongations of the linear springs, g,

the displacement in the vertical direction of the gravity centre G of the chassis and g, the rotation of the chassis with

respect to the horizontal.

We assume that there are known the dimensions L; and L, that define the position of the gravity centre G of the
chassis with respect to the two wheels and J the moment of the inertia with respect to a horizontal axis that passes

through its gravity centre.

2. THE EQUATIONS OF MOTION

The kinetic energy of the system has the expression
1 1 1 1
T =—mqg? +—myq? +—=Mg? +—Jg?.
> 191 > 293 5 q3 5 q;

The forces, which appear in the system, derive from a potential, hence the potential energy reads

1 1 1
V= Ek1q12 —mgq; +5kzq§ —my8q; +Ed1(L1Q4 -4 *%)2

€ 1 2 €,
+—————+—d,(qy — Lrqy —q,) + ————— — Mgy,
Ligs—q1+q5 2 3= Laqs —qy
g being the gravitational acceleration.
We successively calculate
or . or . or . or .
—— =M —— =My —— = Mgy —— = Jqy,
o4, 94, 043 04,4

afer)_,oodfer)_ . dfor
dr | 4, 4 g, 29224/ 34,

0q, 0q, 0q5 0q,4
oV

= kg —mg —dl(qu4 -q t 513)“‘

. dfor .
=Mgy; —|—|=J4,,
dt\ 0g,

€

0q, (L1Q4 -q t %)2 ’

orv e
a—:kzqz—ng—dz(%—L2Q4—Clz)+ : s

92 (% - Lyq, - Q2)
a_V:dl(L1CI4—‘11+‘13)— A 2 +dy (g3 = Lagqy — q2) - = 2
945 (L1Q4 —4q %) (% - Lyq4 - %)
6_V = lel(L1Q4 -4+ %)_ L - dez(% —Lyq4 — Q2)+ L2
04,4 (L1CI4 -q t ‘13)2 (513 —Lyqy - 512)2
such that the Lagrange equations read
mg, + kg, —mg _dl(L1q4 —-q t Q3)+e—12 =0,
(Ligs —q) +43)

My +kyqy —myg —dy(q5 — Lyg, —QZ)+ = =0,

(‘]3 -Lyq4 —q, )2

€

Mgy +d\(Ligs — q) +q3) -

(Ligs — a1 +q3)

Lie

2 +dy(qs — Lrqs — 43) -

JG, + lel(L1q4 -—q t %)_

(Ligs — a1 +43)

Let us denote

E1 =918, =925 83 =G35 84 =q45 &5 =15 &6 =425 &7 =43, &g =44

€

3 — Lydy(qs = Lryqs — q2) +

obtaining a system of eight first order non-linear differential equations

dE.)] _ . d&z _ . dE_’3 _ . dE"4 =

= =& " =& & =&7; & =g

d 1

% =—|-k& +mg+d (L&, —& +&5)-
t m

€

(L1§4 -+ ‘23)2 '
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dg_6_L _ _ _ _ €
@ m { kol +myg +dy (85 — Loy — &) 6 - L, - 5,2)21’ (10¢)
g, 1 €
S _ Y\ _alLe, - _a
Qo M{ 1(Lgy §1+§3)+(L1§4—§1+§3)2
(10d)
_d2(§3_L2§4_§2)+(§ Leg &) +Mg1,
3 = LGy — G
d&g 1 Lie
s _ 1 rd(Le, - S
a J{ A S
(10¢)

L,e
+L2d2(§3—L2§4—§2)_ e 1
(& - LEs - &)
3. THE EQUILIBRIUM POSITIONS

These are obtained at the intersection of the nullclines, resulting the system
Es=0;E=0;&;,=0;E& =0, 11

— k& +mg+d(LE, - & +§3)—m =
184 =& + &5

— k& +myg +d2(§3 - L&, —az)—

0, (122)

€

(s — Loty — )

> —dy (& — LrE, —&y)+

0, (12b)

|
(L1&s — & +85)
Lie
- Lid (L& — & + &)+ = 2
(Ligs — & +85)
Adding the first three relations (12), one obtains the equation
— k& —kyEy +(my +my + M)g =0. 13)
Multiplying the first relation (12) by L;, the second relation (12) by — L, and summing the results at the last
expression (12), we deduce

€
(&5 — Ly, —&,)

L
+ L2d2(§3 - L&y - éz)_ (E_, L 2;2 £ )2
3 = L6y — &

—d\ (L&, -8 +E5)+ +Mg=0, 120)

(12d)

= Liky&y + Lyky&y + (Lymy = Lymy)g = 0. 14)
The relations (13) and (14) form a linear system of two equations with two unknowns (&, and &,)
kil + a8y = (my +my + Mg s LkE) — Lyky&, = (Limy — Lymy g, as)

the solution of this system being
(ml + m, +M)g k,
(lel —Lym, )g — Lk,

Comy(Ly + L)+ LM

& = g, (162)
ko k (Ly + Ly )y
Lk, = Lyk,
k (m1 + my +M)g
Liky (Lymy — Lymy)g| my(Ly + Ly)+ LM
&, = = 6b)
ki ks (Ll + 1 )kz
Lk, - Lyk,
We multiply now the third equation (12) by — L, and we add it to the last equation (12) obtaining
(L, + L
(Ll +L2)d2(§3 - L, —52)— ! 2)62 - LiMg =0 a7
(&5 ~ L4 - &)
or, equivalently,
L, e,

(€5 — Lty —&,) —mMé’(@s - Lty -E) -2 =0. as)
1

dy
We multiply the third equation (12) by L, and we add it to the last equation (12) resulting
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L L
—(Ly + Ly)d (&5 + LiE, — &) + . (+1LT§42—)61§1)2 +L,Mg =0 19)

or, equivalently,
L,
(&5 + Ligy &) - —Mg(§3+L§4 &) -—=0. (20)
(Ly + Loy dl
Let us consider for the beginning the equatlon (18) and let us denote

Z=§3—Lz§4—§z;0ﬁ=( L)d Mg ; B——;a>0;B>0, 21
2 M1

resulting the relation
3 —az?-BP=0. (22)
In the sequence of the coefficients for the equation (22) there exists only one variation of sign and applying the

Descartes theorem, it results that the equation (22) has only one positive real root. Making the change of variable
z > —z, one obtains the equation

z

2 +oz2+B=0 (23)
for which there exists no variation of sign in the sequence of the coefficients. Applying again the Descartes theorem, it
results that the equation (23) has no positive real root and therefore the equation (22) has no negative real root. In the
end, we obtained that the equation (22) has only one real root, thus the equation (18) has one real root, too. Let us
denote this root by z,. Proceeding in an analogous way, one deduces that the equation (20) has one real root and we
denote this root by z, . It results the system

€3 — L8y -8y =23 &3+ L1Ey — & =25, 249)
for which the solution is
721+ & — Ly
e L] Ll(zl +§2)+L2(22 +§1)
g, = - , (25a)
1- L, L +L,
1L,
respectively
1z, +&,
£, = 1z, +§ :(Zz +§1)—(21+§2). (25b)
Y-, L +1L,
1L

We obtained that there exists only one equilibrium position defined by the relations (16) and (25).

4. STABILITY OF THE EQUILIBRIUM

Let us denote by f; the expressions in the right-hand side of the relations (10) and let be

. e - P
Ju=—tik=18;1=18. (26)
oy
We have
Ju=05j2=0;j3=0; 14 =05 jis=1; jig =0; ji; =0; jig =0, 27
Jo1 =05 Jon =05 ja3 =05 jou =05 jos =05 jog =15 jo =05 jpg =0, (28)
J31 =05 j3 =05 j33 =05 j3u =05 j35s =05 j3g =05 j3z =15 j3s =0, 29)
Jar =05 Jgp =05 ju3 =05 jau =05 jus =05 jue =035 jg =05 jug =1, 30)
J'51:—£—i— 24 ; Js2 = 0; jsazﬂ+ 2
momy o (LEg, - &) +E5) momy (g, — & +&5) a1)
. d,L 2e,L , . . .
Jsa ==+ — 75 Jss =05 Jsg =05 Js7 =05 jsg =0,
m(Ligy — & + &)
. . k d 2e . d 2e
Je1 =03 ]szz—m_z—m_z— : 3 ]63:m_2+ - >
2 2 m2(§3_L2§4_§2) 2 m2(§3—L2§4—§2) 32)
d2L2_ 2@2L2

Jea T3 Jes =05 Jes =05 Jg7 =05 jeg =0,
ms my(Es — Lty — &)
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; d, N 2e; ) j dy n 2e; .
71 = . ) 2= 3
M M(L15.>4 -& + §3)3 M M(‘iz - L&y — ‘52)

. dl 261 d2 262
Ji3 = T~ VS 3
M M(L1§4 -& +§3) M M(§3 - L&, —éz)
. d,L 2Le d,L 2e,L ) . .
]74:_11”1— 171 T+ j\/lz+ 22 T Jis =05 Jis =05 jy; =0;
M(L1§4 -& +§3) M(§3 - L&, —éz)
Jis =0,
. Ld, 2L ) . Lyd, 2Lyey :
]Sl:J 3 ]82:_J - 30
J(L1§4 -& +§3) J(§3 - L&, —éz)
. _ lel _ ZLlel L2d2 2L2€2 .
Jg3 = J 3 + J + 3
J(L1§4 -& + §3) J(§3 - L&, - &2)
13d, 2L%e 13d, 2L3e,
Jsa = — - - - 5 Jss =05 Jge =05 Jjg; =03
JooILEs g v E) T JEs - Lgy -8y
Jgg = 0.
The characteristic equation
det(J 1) =0,
where J is the Jacobi matrix
J= [jkl]k,1=1§>

and T is the eight-order unity matrix, reads

-A0 0 0 1 0 0 O
0O-20 0 0 1 0 O
0O 0-20 0 O 1 O
0O 0 0-A20 0 0 1 _0o
Jsi 0 Jjssjsa—X 0 0 Of
0 Jje Jjes Jesa 0 —A 0 0
Jn Jn Jjin jia 0 0 =X 0
Js1 Js2 Jgz Jsa O 0 0 — A

(33)

(34)

(35)

(36)

37

Multiplying the columns five, six, seven and eight by A and summing the obtained results to the columns one, two,
three and four, respectively, one deduces the equation

1 00 0
01 0 0
00 1 0
00 0 1

%0 0 o %
0-20 0
0 0 -1 0
0 0 0 —»

Developing the determinant after the lines one, two, three and four, it results

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Jsi=2 0 Js3 Jsa
R L Joa
Jn Jn Jn=N  jn
Jsi Js2 Jss Jsa =W
Jsi=A 0 Js3 Js4
0 Jjo—-¥ Ja Je4
Jn in  in=%  Jn
Jgi Jg2 Jss Jsa =M
or, equivalently,
Jeo =W e Je4
Usi =2) Jn =%
Js2 Jss  Jsa =W

=0
0 joo =2 o 0 jo -V Je
+Jsslin Jn Ju | = Jsalin Jn Jp - A=
Jsi Js2 Jsa — A Js1 Js2 Jg3
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The relation (39) is a bi-square equation of the fourth order in the unknown A2 . It also offers the condition for the
equilibrium position to be stable or unstable because it imposes a relation of connectivity in the space of the parameters

ki, ky, dy, d,, e and e,.

5. APPLICATION

Let us consider the practical case for which
by = ky = 4'105[%]; dy =d, = 5'104[%]; e = e, = S[Nm?]; 1, = L, = 2[m]; M = 900[kg];

m =m, = 25[kg]; g= 10[%2J.
The relations (16) offer

25-(2+2)+2-900 25-(2+2)+2-900

— gech — =0.0011875|m|; = g&h = =0.0011875[m]|.
S =i (2+2)-4-10° bm]; &2 =45 2+2)-4-10° [m]
The equation (18) becomes
z3—;-900-1022— > =0
(2+2)-5-10* 5-104
wherefrom

23 = 0.0922 — 0.0001 = 0
with the solution
z =z = O.I[m].
In an analogous way we find
z¢h = 0.1[m].
The expressions (25) offer

£, = gech = 2(0.1 + 0.00118752)J+r ;(0.1 +0.0011875) _ 0.1011875m].,

2(0.1+0.0011875) + 2(0.1+ 0.0011875)
@4 =
242
The partial derivatives read
Jsi = —18400; js, = 0; js; = 2400; js, = 4800,
Jo1 = 03 jer = —18400; jo3 = 2400; jo, = —4800,
J71 = 66.667; ji, = 66.667; j,; =—-133.333; j,, =0,
Js1 =100 jgy =—100; jg3 =03 jgq = —400.
Results the characteristic equation

=0.1011875[m].

— 18400 — 22 0 2400 4800
0 — 18400 — 22 2400 —-4800 | 0
66.667 66.667 —133.333 - )2 0 ’
100 —-100 -2 — 400 — 22
wherefrom
A3 +37333.3331° + 356959994.7A% +1.5872 - 101142 +1.36533 - 1013 = 0.
We denote
A =n

and one obtains the four-order equation
n* +37333.333n° +356959994.7n2 +1.5872 - 10'1n +1.36533 - 103 = 0.

The solving of this equation is made by the Lobacevski—Graeffe method for which for the equation
agx* +ax3 +ayx? +azx+a, =0

the passing from the step p to the step p + 1 takes place with the formulas

2~ [agw]z; alP*) _{[afp>]2 _ 2agp>a§p>}; alr+) [agm]z 240l 4 2a{P)alP);

) = L f - 26 e < LT

We shall create the next table.
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Table 1: The solving of equation (168) by the Lobacevski—Graeffe method

Step a, a, a, as a,
0 1 37333.333 356959997.7 | 1.5872 - 10! | 1.36533 -1013
1 1| —679857763.5 | 1.156-10"7 | —1.54-10%2 | 1.864-10%
2 11 -2310-107 | 1.33-10% | —1.95-10% | 3.47-10%
3 1| —2668-10%* | 1.78.10% | —3.73.10%8 | 1.21.10'%
Let be the function
h:R = R; h(n)=n* +37333.3330° + 356959994.7n2 + 1.5872 -10''n + 1.36533 - 10'3 (59)
for which
h'(n) = 4n3 +112000n2 + 713919989.41 + 1.5872 - 10'!, (60)
h"(n) = 1202 + 2240001 + 713919989.4 . (61)

The equation 4"(n)) = 0 has the roots
— 224000 + /2240002 — 4 - 12 - 713919989.4

N2 = 2 , (62)
wherefrom

n, = —4078.07; n, = —14588.6. (63)
In addition,

B'(n,)=-1.161-10"2 < 0; h'(n,)=1.161-102 >0, (64)
such that the equation /'(n) = 0 has three distinct real roots. We also have

h(-230) ~ —4.42-10"2 < 0; h(-=1)~1.36-108 > 0; h(~18000) ~ -3.8 - 10" < 0; )

h(~5000) = 4.1-10'5 > 0
and therefore the equation h(n) = 0 has four distinct negative real roots.
From the table 1 we get

() 1034
ny = -4 = 5206107 56096, (66a)
() 1
a4y
€ 68
al 1.78 - 10
S B R YL N L S E 66b
2 al) 2.66 -10% o
3) 88
al 3.73-10
B I RO = v 25 U 3468, 66¢
s al) 1.78 - 1068 “9

N

3) 105
aj 1.21-10
—8 =8 ——— ~—115.82. 66d
M4 ald) 3.73-10%8 (66d)

Result the roots of the characteristic equation

A = 1417615 Ay, = —-141.76i; A3 =130.05/; A, = -130.051; Xis =18.62i; Ay = —18.62i;
Ay = 10.76i ; Ly = —10.76i
and all of them are pure imaginary, the equilibrium being simply stable.

(67)

6. CONCLUSIONS

In our paper we presented a model for a half of an automobile with neo-Hookean suspensions. We obtained the
equations of motion and the equilibrium position. We proved that there exists only one equilibrium position. For this
equilibrium position we discussed the conditions for its stability. In the end we presented a numerical application and
we solved it completely, obtaining that the equilibrium position is simple stable.
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