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Abstract:  The paper shows some theoretical aspects concerning the analytical modelling of the dynamical behaviour of a 

composite plate (free vibrations, composite plate with clamped edges). To simplify the mathematical model, only the case of 

the plate made of a symmetric laminated composite material is considered. Beginning from the equation of motion, the modal 

analysis consists in seeking of both natural frequencies and natural mode shapes of vibrations to completely describe the 

dynamical behaviour of such a composite plate. Then, the model is used to analyse the dynamical behaviour of a plate made 

of an epoxy resin unidirectional reinforced with continuous E-glass fibres. From boundary conditions point of view, the work 

analyses only the case of all edges embedded. Finally, the results obtained in case of the particular plate involved, will be 
compared with the results obtained by finite element analysis (FEA).The small values of the error shows the accuracy of the 

numerical model proposed to analyse dynamical behaviour of any plate made of laminated composite material. 
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1. INTRODUCTION 

 

This paper focus on some aspects concerning both of the analytical modelling and numerical simulation (FEA) 

of the dynamical behaviour of a composite plate (free vibrations, composite plate with clamped edges).The 

Rayleigh’s approximation method proposed in scientific literature [3] is used to compute natural frequencies in 

case of a composite laminated plate whose all edges are clamped. The main objective of this work is to compare 

the natural frequencies computed with Rayleigh’s approximation with the ones obtained from finite element 

analysis (FEA). 

 

 

2. THEORETICAL ASPECTS 

 
It is well-known that the constitutive equation of an element of composite laminated plate [1-4] may be written 

as follows: 
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where [ ]ijA is called stretching stiffness matrix; [ ]ijD  is bending-twisting stiffness matrix and [ ]ijB  is coupling 

stiffness matrix. The last matrix links the forces developed within the plane of the plate and the curvature 

vectors. It also links the bending-twisting moments and the displacements within the plane of the plate. 

Herein, only the case of the symmetrical laminated composite plate will be studied. This means that some terms 

of the rigidity matrix ( 0Bij = ; 0DD 2616 == ) vanishes. In this case, the equations of the plate [3] may be 

written as follows: 
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where the quantity sρ represents the weight per unit area of the orthotropic layer at point (x,y). In the case of a 

plate of n layers, the layer k having a material density kρ , the quantity sρ is: 
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where kt  is the thickness of the layer k. 

The centrifugal moment of inertia xyI  may be neglected and the above equation becomes: 
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The displacement along the direction perpendicular to the plate, Oz direction, may be expressed in complex 

form:  

 ( ) ( ) ti
00 ey,xwt,y,xw ω= , (5) 

where ω  represents the angular frequency of the harmonic vibrations. Substituting this expression into the 

equation (4) leads to: 
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The boundary conditions of a rectangular plate simply supported along all edges, may be written: 

- for 0x =  and ax = : 
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-  for 0y =  and by = : 
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Using the constitutive equation corresponding to a symmetrical composite plate, leads to the conditions 

described below: 

� for 0x =  and ax = : 
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� for 0y =  and by = : 
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This means that a solution of the above equations (9) and (10) should be [3]: 
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and substituting this solution into the equation (6) leads to: 
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Since 0Cmn ≠ , the coefficient of mnC  should be equal to zero. This condition leads to the expression of the 

natural frequencies [3] of the transverse vibrations: 
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where baR = . The deformed shape of the plate corresponding to the natural frequencies is given by the 

relation (11). 

For 1nm == , the fundamental frequency of the composite laminated plate may be computed by using the 

following formula: 
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The method described above is valid only for the case of a composite plate whose edges are simply supported. In 

case of the others boundary conditions only approximation methods may be used. Herein, the Rayleigh’s 
approximation is used to compute the natural frequencies. 

The Rayleigh’s approximation [3] of the vibration frequency of mode mn may be written in the following form: 
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where the coefficients 12α , 66α  and 22α are computed with the following formula: 
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while the coefficients 1c , 2c , 3c are shown in the Table 1 for the case of a composite plate whose edges are 

clamped. 

The natural frequencies mnω  computed with the above relation, is expressed in [rad/s]. 

 

Table 1: Coefficients 1c , 2c , 3c  for natural frequencies mnω  of an orthotropic composite plate [3] 

m n 
1c  2c  3c  

1 1 4.730 12.3
2
=151.290 4.730 

1 2,3,4,... 4.730 12.3·c3(c3-2) (n+0.5)π 

2,3,4,... 1 (m+0.5)π 12.3·c1(c1-2) 4.730 

2,3,4,... 2,3,4,... (m+0.5)π c1(c1-2)c3(c3-2) (n+0.5)π 

 

 

3. DYNAMICAL BEHAVIOUR OF A RECTANGULAR COMPOSITE PLATE WITH CLAMPED 

EDGES  

 

Herein, it is studied the vibration behaviour of a laminated composite plate [0 / 90 / 0]s having the dimensions a 

= 800 mm, b = 400 mm (Figure 1) while the total thickness of the plate is    h = 4.8 mm. All layers have the same 

thickness. Each lamina is made of epoxy resin unidirectional reinforced with continuous E-glass fibres. The 

characteristics of the lamina are E1 = 140 ⋅ 103 MPa; E2 = 5 ⋅ 103 MPa; G12 = 5 ⋅ 103 MPa; ν12 = 0,35; σ1t = 

1200 N/mm2; σ1c = 1000 N/mm2; σ2t = 50 N/mm2; σ2c = 120 N/mm2. Density of the element of volume 

corresponding to the composite layer is 3mm/g0025.0=ρ . 

The Figure 2 shows the stacking of the plies of the composite plate analysed. 

The first of all, the mathematical model described in the previous section, may be used to compute the natural 

frequencies corresponding to the first 10 modes of vibration.  
 

 

 

Figure 1: The cases of loading analysed Figure 2: Stacking of the plies 
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In this particular case, the rigidity matrix corresponding to the composite plate element may be rapidly computed 

by using a computer program developed by using MatLab software within a previous published paper [5]: 

 

Table 2: Natural frequencies and vibration modes in case of a composite laminated plate with clamped edges 

Rayleigh’s 

approximation 

Finite element analysis 

(FEA) 
No. of 

vibration 

mode 

m n 
kmn 

 

Natural 
frequency

'
mnω   

(cycles / times) 

Vibration mode 
Natural 

frequency 
''
mnω  

(cycles / times) 

Eigen 
value 

Error 

δ 
(%) 

1 1 1 60.716 0.13588 

 

0.13619 0.73228 0.22 

2 2 1 85.793 0.19201 

 

 

0.19204 1.4560 0.02 

3 3 1 136.944 0.30648 

 

 

0.30674 3.7145 0.08 

4 1 2 155.556 0.34814 

 

 

0.35184 4.8870 1.06 

5 2 2 169.950 0.38036 

 

 

0.38311 5.7943 0.72 

6 3 2 204.613 0.45793 

 

 

0.45942 8.3327 0.33 

7 4 1 211.842 0.47411 

 

0.47567 8.9323 0.33 

8 4 2 264.902 0.59286 

 

0.59370 13.915 0.14 

9 1 3 301.136 0.67395 

 

 

0.68995 18.793 2.37 

10 5 1 308.355 0.69011 0.69483 19.060 0.68 
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The coefficients 12α , 66α , 22α  are computed by using the relations (16): 

 0.01666812 =α ; 0.04741166 =α ; 0.38095322 =α . (18) 

Taking into account the value of density 3mm/g0025.0=ρ  corresponding to the element of volume of a 

composite layer, the density of an element of area of the composite plate may be easily computed: 

 2
s mmg012.08.0*6*0025.0 ==ρ , (19) 

because all layers of the composite material involved are made of the same composite material. 

The fifth column of the Table 2 contains the values of the natural frequencies '
mnω  computed by using 

Rayleigh’s approximation method. 

In the second step, the flexural vibrations behaviour of the composite laminated plate involved in this study was 
obtained by using the finite element analysis (FEA). To this effect a commercial soft was used to model the 

composite plate by using composite shell elements. Therefore, it was used a 4-node doubly curved thin or thick 

shell element, with reduced integration, hourglass control, finite membrane strains. Finally, the model contains 

800 elements and 861 nodes. The values of the natural frequencies ''
mnω  obtained by finite element analysis 

(FEA) are given in the antepenultimate column of the Table 2. 

 

 

 

Figure 3: Changing of the natural frequency  for each vibration mode in case of the composite plate analysed 

 

The Figure 3 plots the changing of the natural frequency for the first ten vibrations mode. 

Finally, the natural frequencies computed by using Rayleigh’s approximation method, are compared with the 

ones obtained by numerical simulation with the method of the finite elements. Thus, the error δ is computed by 

using the following formula: 
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and the results are reported in the last column of the Table 2 in case of each vibration mode analysed. It may 

remark that the error δ is acceptable, between 0.02 % and 2.37 %. 

 

 

4. CONCLUSION 

 

The comparison between the natural frequencies computed by using Rayleigh’s approximation and the natural 

frequencies obtained by finite element analysis (FEA) in case of the numerical example involved shows us the 
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accuracy of the numerical model used. It follows that this model may easily used to analyse flexural vibrations in 

case of any composite laminated plate whose edges are clamped. 

It may note some important remarks concerning the usefulness of the numerical model developed to analyse the 

vibration modes and to compute natural frequencies in case of a rectangular composite plate: 

− material structure of the composite plate analysed (material corresponding to each layer, number of 

layers, orientation of the fibres within layers) may be easily changed; 

− dimensions of the plate and boundary conditions (all edges simply supported, two edge clamped while 

the other two edge are free etc) may be easily changed too. 
 

 

ACKNOWLEDGEMENT 

 

The research described within the present paper was possible owing to a national scientific project exploratory 

research, Project ID_733 / 2009, supported by Ministry of Education and Research of Romania. 

 

 

REFERENCES 
 

[1] Alămoreanu, Elena; ChiriŃă, R.:  Bare si placi din materiale composite, Editura Tehnica, Bucuresti, 1997; 

[2] Barbero, E., J.: Introduction to composite materials design, CRC Publisher, USA, 1998, pp. 129-201, ISBN 
978-1560327011; 

[3] Berthelot J. M.: Mechanical behaviour of composite materials and structures. Course, Chapter 24, 

„Vibrations of laminated and sandwich beams and plates”, Institute for Advanced Materials and Mechanics, Le 

Mans, France, 2007, http://www.compomechasia.com; 

[4] Cerbu C.; Curtu, I.: Mecanica materialelor compozite. Editura UniversităŃii Transilvania din Braşov, Braşov, 
2007, pp.71-129, ISBN 978–973–635–951–4; 

[5] Cerbu C.: Modeling of the laminated composite materials, In: Proceedings (BDI - sub egida Proligno, 

IUFRO, UEA,) of International Conference „Wood Science and Engineering in the Third Milenium ICWSE 

2009, 4-6th of June, 2009, “Transilvania” University of Brasov, p. 356-363, Editura Universității Transilvania, 

2009, ISSN 1843-2689; 

[6] Tenek, L.K.; Argyris, J.: Finite element analysis for composite structure. Kluwer Academic Publishers, 
Dordrecht / Boston / London, 1998, pp. 135-261, ISBN 0-7923-4899-0. 

 


